MHB Solve the Trigonometry Equation: sin^-1(x) + cos^-1(2x) = π/6

  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Trigonometry
Petrus
Messages
702
Reaction score
0
Hello MHB,
I am working with an old exam
Solve this equation $$\sin^{-1}(x)+\cos^{-1}(2x)=\frac{\pi}{6}$$

progress:
I start take cos both side and I get
$$2x+cos(\sin^{-1}(x))=\frac{\sqrt{3}}{2}$$
I draw it and call the bottom side for B and get
30blhkw.png

so we got
$$\sqrt{1-x^2}+2x=\frac{\sqrt{3}}{2}$$
Is this correct? (notice that I got problem solving this equation as well.)Regards,
$$|\pi\rangle$$
 
Mathematics news on Phys.org
Petrus said:
Hello MHB,
I am working with an old exam

Solve this equation $$\sin^{-1}(x)+\cos^{-1}(2x)=\frac{\pi}{6}$$

progress:

I start take cos both side and I get
$$2x+cos(\sin^{-1}(x))=\frac{\sqrt{3}}{2}$$

Unfortunately is $\cos (\alpha + \beta) \ne \cos \alpha + \cos \beta$ ... Kind regards$\chi$ $\sigma$
 
Solve this equation sin−1(x)+cos−1(2x)=π6

you are putting cos (A+B) = cos A + cos B which is not correct

we have sin ^-1 x = cos ^-1 ( 1- x^2)^(1/2)
and cos ^-1 2x = sin ^-(1-4x^2)^(1/2)

so take cos of both sides to get

cos ( sin ^-1 x) cos ( cos ^-1 2x) - sin ( sin ^- 1 x) cos (cos ^-1 2x) = sqrt(3)/2

os sqrt((1-x^2)(1-4x^2) - 2x^2 = sqrt(3)/2

now you should be able to proceed
 
Hello, Petrus!

\text{Solve: }\:\sin^{-1}(x)+\cos^{-1}(2x)=\tfrac{\pi}{6}
\text{Let: }\:\begin{Bmatrix}\alpha = \sin^{-1}(x) &\Rightarrow& \sin\alpha \,=\,x &\Rightarrow& \cos\alpha \,=\,\sqrt{1-x^2} \\ \beta \,=\,\cos^{-1}(2x) &\Rightarrow& \cos\beta \,=\,2x &\Rightarrow& \sin\beta \,=\,\sqrt{1-4x^2} \end{Bmatrix}

The equation becomes: .\alpha + \beta \:=\:\tfrac{\pi}{6}

Take the sine of both sides: .\sin(\alpha + \beta) \:=\:\sin\left(\tfrac{\pi}{6}\right)

. . . \sin\alpha\cos\beta + \cos\alpha\sin\beta \:=\:\tfrac{1}{2}

. . . (x)(2x) + \left(\sqrt{1-x^2}\right)\left(\sqrt{1-4x^2}\right) \:=\:\tfrac{1}{2}

. . . 2x^2 + \sqrt{(1-x^2)(1-4x^2)} \:=\:\tfrac{1}{2}

. . . \sqrt{(1-x^2)(1-4x^2)} \:=\;\tfrac{1}{2} - 2x^2Square both sides:

. . . \left[\sqrt{(1-x^2)(1-4x^2)}\right]^2 \;=\;\left[\tfrac{1}{2} - 2x^2\right]^2

. . . (1-x^2)(1-4x^2) \;=\;\tfrac{1}{4} -2x^2 + 4x^4

. . . 1-5x^2 + 4x^4 \;=\;\tfrac{1}{4} - 2x^2 + 4x^4

. . . \tfrac{3}{4} \:=\:3x^2 \quad\Rightarrow\quad x^2 \:=\:\tfrac{1}{4}

Therefore: .x \:=\:\pm\frac{1}{2}
 
Thanks evryone for pointing out what I have done wrong!:) I got same answer as Soroban/facit so I got correct answer and understand what I did wrong!:)

Regards,
$$|\pi\rangle$$
 
Congratulations!

You have become a Journeyman.

- $\text I\ \lambda\ \Sigma$
 
I like Serena said:
Congratulations!

You have become a Journeyman.

- $\text I\ \lambda\ \Sigma$

I apologize for my ignorance, but I also have been classified as 'Journeyman'... now I ask what is the difference between 'Journeyman' and [for example...] 'Craftsman'?...

Kind regards

$\chi$ $\sigma$
 
The number of posts.
Starting at 500 posts you're classified as a Journeyman.
 
chisigma said:
I apologize for my ignorance, but I also have been classified as 'Journeyman'... now I ask what is the difference between 'Journeyman' and [for example...] 'Craftsman'?...

Kind regards

$\chi$ $\sigma$

The user titles are based on post counts as follows:

MHB Apprentice: 0-99 posts
MHB Craftsman: 100-499 posts
MHB Journeyman: 500-999 posts
MHB Master: 1000-4999 posts
MHB Grandmaster: 5000-Infinity posts
 
  • #10
soroban said:
Hello, Petrus!


\text{Let: }\:\begin{Bmatrix}\alpha = \sin^{-1}(x) &\Rightarrow& \sin\alpha \,=\,x &\Rightarrow& \cos\alpha \,=\,\sqrt{1-x^2} \\ \beta \,=\,\cos^{-1}(2x) &\Rightarrow& \cos\beta \,=\,2x &\Rightarrow& \sin\beta \,=\,\sqrt{1-4x^2} \end{Bmatrix}

The equation becomes: .\alpha + \beta \:=\:\tfrac{\pi}{6}

Take the sine of both sides: .\sin(\alpha + \beta) \:=\:\sin\left(\tfrac{\pi}{6}\right)

. . . \sin\alpha\cos\beta + \cos\alpha\sin\beta \:=\:\tfrac{1}{2}

. . . (x)(2x) + \left(\sqrt{1-x^2}\right)\left(\sqrt{1-4x^2}\right) \:=\:\tfrac{1}{2}

. . . 2x^2 + \sqrt{(1-x^2)(1-4x^2)} \:=\:\tfrac{1}{2}

. . . \sqrt{(1-x^2)(1-4x^2)} \:=\;\tfrac{1}{2} - 2x^2Square both sides:

. . . \left[\sqrt{(1-x^2)(1-4x^2)}\right]^2 \;=\;\left[\tfrac{1}{2} - 2x^2\right]^2

. . . (1-x^2)(1-4x^2) \;=\;\tfrac{1}{4} -2x^2 + 4x^4

. . . 1-5x^2 + 4x^4 \;=\;\tfrac{1}{4} - 2x^2 + 4x^4

. . . \tfrac{3}{4} \:=\:3x^2 \quad\Rightarrow\quad x^2 \:=\:\tfrac{1}{4}

Therefore: .x \:=\:\pm\frac{1}{2}

In the above solution
x = 1/2 is a root

as sin−1(1/2)+cos−1(1)=π/6 + 0 = π/6

but x= - 1/2 is not a solution as

sin−1(-1/2)+cos−1(-1)=- π/6 + π = 5 π/6

so x= - 1/2 is erroneous
 
  • #11
I thought that I would provide a simpler solution
we have cos ^-1 x = sin ^-1 ( 1-4x^2)^(1/2)

now given equation

sin ^-1(x) = π/6 – cos ^-1(2x)

take sin of both sides

x = sin (π/6) cos cos ^-1(2x) - cos (π/6) sin cos ^-1(2x)

or x = ½ * 2x – sqrt(3)/2 * (1- 4x^2)^(1/2) = x - sqrt(3)/2 * (1- 4x^2)^(1/2)

or * (1- 4x^2)^(1/2) = 0 => x = +/- ½

x = ½ satisfies and -1/2 does not satisfy the condition .

So solution = x = ½
 

Similar threads

Replies
1
Views
1K
Replies
4
Views
1K
Replies
5
Views
1K
Replies
3
Views
3K
Replies
3
Views
1K
Replies
11
Views
2K
Replies
1
Views
4K
Back
Top