Solve this Hamiltonian System in Several Ways

Click For Summary
The discussion revolves around solving a Hamiltonian system represented by the equations dz/dt = ∇_p H and dp/dt = -∇_z H. The user initially concludes that if ∇_p H = 0, then z must be constant, leading to a linear relationship for p, which raises concerns about the validity of finding a numerical solution. Another participant clarifies the interpretation of the Hamiltonian system, suggesting a different approach involving two variables. Additionally, there is a query about calculating the energy error and the meaning of L^2 error in this context. The conversation highlights the complexities of Hamiltonian systems and the need for clarity in numerical solutions.
ResiRadloff
Messages
2
Reaction score
0
Homework Statement
Let us denote by ## \textbf{z} = (x,y) \in \mathbb{R}^2 ## the Cartesian coordinates of a point in the plane.

1. Given the Hamiltonian ## H(\textbf{z}) = \frac{|\textbf{z}|^2}{2} ##, write down the corresponding canonical Hamiltonian system for ##\textbf{z}(t)##.

2. Write down the analytical solution of this system.

In the following, assume that the system reads ##\frac{d}{dt}\textbf{z} = \textbf{F}((\textbf{z}(t)))## where ## \textbf{F} = (F_x,F_y) ##, and let ##t^n = n\Delta t## where ##\Delta t > 0## is the time step size. Also let ## \textbf{z}^n = \textbf{z}(t^n) ##.

3. Solve the Hamiltonian system numerically by using the following numerical methods. For each of them write down the scheme, plot your result vs. the analytical result, and plot energy (= Hamiltonian) and ##L^2 ##-error of the scheme. Start with a random point ##(x_0,y_0) \in [0,1]^2 ## at ## t = 0 ## and evolve ## \textbf{x}(t) ## forward in time. You may use ##\Omega = 2, \Delta t = 0.03 ##, and do 500 time steps.

(a) The explicit Euler method: ##\textbf{z}^{n+1} = \textbf{z}^n + \Delta t \textbf{F}(\textbf{z}^n) ; \textbf{z}^0 = \textbf{z}(t=0) ##

[...]
Relevant Equations
--
Good evening,
unfortunately I can't get to the solution of my task

I wrote for the system:

## \frac{dz}{dt} = \nabla_p H ; \\
\frac{dp}{dt} = - \nabla_z H ##

Then the solution would be (as ## \nabla_p H = 0) ##:

## \frac{dz}{dt} = 0 \Rightarrow z = const. ## and ## p = zt + p_0 ##.

But that can't be as now finding a numerical solution doesn't make sense?.🙁

I would be really happy if someone yould help me?

Thanks a lot
Resi

Danke schonmal und viele Grüße
 
Physics news on Phys.org
Are you not looking at \begin{split}<br /> \frac{dx}{dt} &amp;= \frac{\partial H}{\partial y} \\<br /> \frac{dy}{dt} &amp;= -\frac{\partial H}{\partial x}\end{split} That is how I would interpret "hamiltonian System" if given a "hamilonian" which is a function of exactly two variables.
 
Okay, thanks, yeah that makes more sense.

Does anyone know how to calculate the Energy-error and what is meant by ##L^2## error?
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K