Solve this problem that involves parametric equations

Click For Summary
SUMMARY

This discussion focuses on solving a problem involving parametric equations, specifically through the derivation of relationships between points and angles in a geometric context. The calculations demonstrate the use of derivatives to establish coordinates and distances, leading to the conclusion that angles QPT and SPT are equal. Key mathematical expressions include the derivatives dy/dx, the distance formula SP, and the application of the Pythagorean theorem to validate angle relationships. The discussion also emphasizes the use of the scalar product to find cosines of angles in vector form.

PREREQUISITES
  • Understanding of parametric equations and their derivatives
  • Familiarity with the Pythagorean theorem in geometric contexts
  • Knowledge of vector operations and scalar products
  • Proficiency in LaTeX for mathematical notation
NEXT STEPS
  • Explore the application of the Law of Cosines in geometric proofs
  • Learn advanced vector calculus techniques for angle calculations
  • Study the properties of parametric equations in higher dimensions
  • Practice using LaTeX for complex mathematical expressions and formatting
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with parametric equations and geometric proofs, as well as educators looking to enhance their teaching of these concepts.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
##P## is a point on the parabola given by ##x=at^2, y=2at##, where ##a## is a constant. Let ##S## be the point ##(a,0)##, ##Q## be the point ##(-a,2at)##and ##T## be the point where the tangent at ##P## to the parabola crosses the axis of symmetry of the parabola.

(a) Show that ##SP=PQ=QT=ST=at^2+a##

(b) Prove that angle ##QPT## is equal to angle ##SPT##

(c) If ##PM##is parallel to the axis of the parabola, with ##M## to the right of ##P##and ##PN##is the normal to the parabola at ##P##, show that angle ##MPN## is equal to angle ##NPS##
Relevant Equations
Parametric equations
My take;
Part (a);

##\dfrac{dy}{dx}=\dfrac{1}{t}##

therefore,

##y-2at=\dfrac{1}{t}(x-at^2)##

##ty-2at^2=x-at^2##

##ty=x+at^2## implying that ##T## has co-ordinates ##(-at^2,0)##.

##SP=\sqrt{(a-at^2)^2+(0-2at)^2}##

##SP=\sqrt{4a^2t^2-2a^2t^2+a^2t^4+a^2}##

##SP=\sqrt{a^2t^4+2a^2t^2+a^2}##

##SP=\sqrt{a^2t^4+a^2t^2+a^2t^2+a^2}##

##SP=\sqrt{(at^2+a)^2}##

##SP=at^2+a##

also;

##PQ=\sqrt{(-a-at^2)^2+(2at-2at)^2}##

##PQ=\sqrt{(-a-at^2)^2}=\sqrt{a^2t^4+2a^2t^2+a^2}=at^2+a##

##QT=\sqrt{(-at^2+a)^2+(2at)^2}=at^2+a##

and

##ST=\sqrt{(-at^2-a)^2}=at^2+a##

thus shown.

For part (b);

Let the midpoint of ##QS## be denoted by ##K=\dfrac{-a+a}{2},\dfrac{0+2at}{2} =(0,at)##

##KP## is the perpendicular bisector to sides ##QP## and ##SP## respectively, we can use pythagoras theorem to show that
##PK^2+KS^2=PS^2## and ##PK^2+KQ^2=QP^2## this would imply that angle ##QPT=SPT##.

that is,

##PK=
\begin{pmatrix}
0 & \\
at & \\
\end{pmatrix}-
\begin{pmatrix}
at^2 & \\
2at & \\
\end{pmatrix}=
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}
##

##\sqrt{PK^2+KS^2}##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}^2+
\begin{pmatrix}
a & \\
-at & \\
\end{pmatrix}^2}=PS
##

and

##\sqrt{PK^2+KQ^2}=##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at& \\
\end{pmatrix}^2+
\begin{pmatrix}
-a & \\
at & \\
\end{pmatrix}^2}=QP
##
since ##PS=QP## and ##PK## is the perpendicular bisector to angle ##QPS## then it follows that angle ##QPT=SPT##.
 
Last edited:
Physics news on Phys.org
...i should be able to use cos with vectors for part (b)...

Alternatively,

##QP=(at^2+a)i, KP=at^2i+atj, SP=(at^2-a)i+2atj##

Angle ##QPK=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{a^2t^4+a^2t^2}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##

Angle ##SPK=\dfrac{a^2t^4-a^2t^2+2a^2t^2}{\sqrt{(at^2-a)(at^2-a)+4a^2t^2)⋅}\sqrt{a^2t^4+a^2t^2}}##

##=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{(a^2t^2(t^2+1)}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##

Therefore angle ##QPK=SPK⇒QPT=SPT##

cheers!!
 
Last edited:
chwala said:
...i should be able to use cos with vectors for part (b)...

Alternatively,

##QP=(at^2+a)i, KP=at^2i+atj, SP=(at^2-a)i+2atj##

Angle ##QPK=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{a^2t^4+a^2t^2}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##
. . .

cheers!!
It looks like you are using the scalar product to find the cosines of the relevant angles. Initially when I read that first line, I thought you might be using the Law of Cosines.

In other words, what you are doing is: ##\displaystyle \ \ \cos(\angle QPK)= \dfrac{\overrightarrow{QP}\cdot\overrightarrow{KP}}{\left|{QP}\right|\,\left|{KP}\right|}##

You left the ##\cos## out of your expressions.
Also, in the first denominator, parentheses were missing from ##(at^2+a)## .

Now for some LaTeX:
Use \hat to get the "^" above i, j, k, etc. Also use \imath and \jmath to get rid of the dot above these letters.

Use \hat \imath to get ##\displaystyle \hat{\imath}##.

\angle gives the angle symbol. ##\displaystyle \angle QPK##
 
Last edited:
  • Like
Likes   Reactions: jim mcnamara, chwala and Mark44

Similar threads

Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
839
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K