Solve this problem that involves parametric equations

Click For Summary
The discussion focuses on solving a problem involving parametric equations, specifically calculating distances and angles between points defined by these equations. In part (a), the distances SP, PQ, and QT are derived, all resulting in the same expression, indicating a consistent geometric relationship. Part (b) explores the midpoint of segment QS and establishes that the perpendicular bisector KP leads to the conclusion that angles QPT and SPT are equal. The use of the scalar product to find cosines of relevant angles is noted, with suggestions for improving LaTeX formatting. Overall, the analysis demonstrates the geometric properties of the parametric equations effectively.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
##P## is a point on the parabola given by ##x=at^2, y=2at##, where ##a## is a constant. Let ##S## be the point ##(a,0)##, ##Q## be the point ##(-a,2at)##and ##T## be the point where the tangent at ##P## to the parabola crosses the axis of symmetry of the parabola.

(a) Show that ##SP=PQ=QT=ST=at^2+a##

(b) Prove that angle ##QPT## is equal to angle ##SPT##

(c) If ##PM##is parallel to the axis of the parabola, with ##M## to the right of ##P##and ##PN##is the normal to the parabola at ##P##, show that angle ##MPN## is equal to angle ##NPS##
Relevant Equations
Parametric equations
My take;
Part (a);

##\dfrac{dy}{dx}=\dfrac{1}{t}##

therefore,

##y-2at=\dfrac{1}{t}(x-at^2)##

##ty-2at^2=x-at^2##

##ty=x+at^2## implying that ##T## has co-ordinates ##(-at^2,0)##.

##SP=\sqrt{(a-at^2)^2+(0-2at)^2}##

##SP=\sqrt{4a^2t^2-2a^2t^2+a^2t^4+a^2}##

##SP=\sqrt{a^2t^4+2a^2t^2+a^2}##

##SP=\sqrt{a^2t^4+a^2t^2+a^2t^2+a^2}##

##SP=\sqrt{(at^2+a)^2}##

##SP=at^2+a##

also;

##PQ=\sqrt{(-a-at^2)^2+(2at-2at)^2}##

##PQ=\sqrt{(-a-at^2)^2}=\sqrt{a^2t^4+2a^2t^2+a^2}=at^2+a##

##QT=\sqrt{(-at^2+a)^2+(2at)^2}=at^2+a##

and

##ST=\sqrt{(-at^2-a)^2}=at^2+a##

thus shown.

For part (b);

Let the midpoint of ##QS## be denoted by ##K=\dfrac{-a+a}{2},\dfrac{0+2at}{2} =(0,at)##

##KP## is the perpendicular bisector to sides ##QP## and ##SP## respectively, we can use pythagoras theorem to show that
##PK^2+KS^2=PS^2## and ##PK^2+KQ^2=QP^2## this would imply that angle ##QPT=SPT##.

that is,

##PK=
\begin{pmatrix}
0 & \\
at & \\
\end{pmatrix}-
\begin{pmatrix}
at^2 & \\
2at & \\
\end{pmatrix}=
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}
##

##\sqrt{PK^2+KS^2}##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}^2+
\begin{pmatrix}
a & \\
-at & \\
\end{pmatrix}^2}=PS
##

and

##\sqrt{PK^2+KQ^2}=##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at& \\
\end{pmatrix}^2+
\begin{pmatrix}
-a & \\
at & \\
\end{pmatrix}^2}=QP
##
since ##PS=QP## and ##PK## is the perpendicular bisector to angle ##QPS## then it follows that angle ##QPT=SPT##.
 
Last edited:
Physics news on Phys.org
...i should be able to use cos with vectors for part (b)...

Alternatively,

##QP=(at^2+a)i, KP=at^2i+atj, SP=(at^2-a)i+2atj##

Angle ##QPK=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{a^2t^4+a^2t^2}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##

Angle ##SPK=\dfrac{a^2t^4-a^2t^2+2a^2t^2}{\sqrt{(at^2-a)(at^2-a)+4a^2t^2)⋅}\sqrt{a^2t^4+a^2t^2}}##

##=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{(a^2t^2(t^2+1)}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##

Therefore angle ##QPK=SPK⇒QPT=SPT##

cheers!!
 
Last edited:
chwala said:
...i should be able to use cos with vectors for part (b)...

Alternatively,

##QP=(at^2+a)i, KP=at^2i+atj, SP=(at^2-a)i+2atj##

Angle ##QPK=\dfrac{a^2t^4+a^2t^2}{at^2+a\sqrt{a^2t^4+a^2t^2}}=\dfrac{a^2t^2(t^2+1)}{(at)a(t^2+1)\sqrt{t^2+1}}=\dfrac{t}{\sqrt{t^2+1}}##
. . .

cheers!!
It looks like you are using the scalar product to find the cosines of the relevant angles. Initially when I read that first line, I thought you might be using the Law of Cosines.

In other words, what you are doing is: ##\displaystyle \ \ \cos(\angle QPK)= \dfrac{\overrightarrow{QP}\cdot\overrightarrow{KP}}{\left|{QP}\right|\,\left|{KP}\right|}##

You left the ##\cos## out of your expressions.
Also, in the first denominator, parentheses were missing from ##(at^2+a)## .

Now for some LaTeX:
Use \hat to get the "^" above i, j, k, etc. Also use \imath and \jmath to get rid of the dot above these letters.

Use \hat \imath to get ##\displaystyle \hat{\imath}##.

\angle gives the angle symbol. ##\displaystyle \angle QPK##
 
Last edited:
  • Like
Likes jim mcnamara, chwala and Mark44
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...