MHB Solve x^6 + 25x^5 + 192x^4 - 7394x^3 + 48936x^2 - 113304x + 79488=0

  • Thread starter Thread starter mente oscura
  • Start date Start date
  • Tags Tags
    Roots
mente oscura
Messages
167
Reaction score
0
Hello.:)

Find the 6 reals roots:

P(x)=x^6-25x^5-192x^4+7394x^3-48936x^2+113304x-79488

Regards.
 
Mathematics news on Phys.org
I have factorized $P(x)$ ”the hard way”:
\[P(x)=(x+18)(x-23)(x^2-6x+6)(x^2-14x+32)
\\\\
P(x) = 0 \Rightarrow
x \in\left \{ -18,23,3\pm \sqrt{3},7\pm \sqrt{17} \right \}\]

There must be a much more elegant way. I do hope someone appears with a better reply(Whew)

lfdahl
 
lfdahl said:
I have factorized $P(x)$ ”the hard way”:
\[P(x)=(x+18)(x-23)(x^2-6x+6)(x^2-14x+32)
\\\\
P(x) = 0 \Rightarrow
x \in\left \{ -18,23,3\pm \sqrt{3},7\pm \sqrt{17} \right \}\]

There must be a much more elegant way. I do hope someone appears with a better reply(Whew)

lfdahl

Hello, Idahl.
Thank you, for taking part in the challenge.

But, what calculations have you realized?

(Muscle) ?

Regards. (Med venlig hilsen) :rolleyes:
 
Hello mente oscura

I have checked the roots numerically and used polynomial division knowing that I was looking for the multiplum of two quadratic polynomials:

$P(x)=(x+18)(x-23)(x^2+ax+b)(x^2+cx+d)$

where:

$(x^2+ax+b)(x^2+cx+d) = x^4-20x^3+122x^2-276x+192$Con vistas mejores :o

lfdahl
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top