Solve x^6 + 25x^5 + 192x^4 - 7394x^3 + 48936x^2 - 113304x + 79488=0

  • Context: MHB 
  • Thread starter Thread starter mente oscura
  • Start date Start date
  • Tags Tags
    Roots
Click For Summary

Discussion Overview

The discussion revolves around finding the six real roots of the polynomial equation P(x)=x^6-25x^5-192x^4+7394x^3-48936x^2+113304x-79488. The scope includes mathematical reasoning and problem-solving related to polynomial equations.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant requests assistance in finding the six real roots of the given polynomial equation.
  • Another participant inquires about the calculations performed by the first participant, suggesting a need for clarification on their approach.

Areas of Agreement / Disagreement

The discussion does not show any consensus, as the second participant questions the first without providing a clear agreement or disagreement on the method or results.

Contextual Notes

The initial post lacks detailed calculations or methods used to approach the problem, which may affect the clarity of the discussion.

mente oscura
Messages
167
Reaction score
0
Hello.:)

Find the 6 reals roots:

P(x)=x^6-25x^5-192x^4+7394x^3-48936x^2+113304x-79488

Regards.
 
Mathematics news on Phys.org
I have factorized $P(x)$ ”the hard way”:
\[P(x)=(x+18)(x-23)(x^2-6x+6)(x^2-14x+32)
\\\\
P(x) = 0 \Rightarrow
x \in\left \{ -18,23,3\pm \sqrt{3},7\pm \sqrt{17} \right \}\]

There must be a much more elegant way. I do hope someone appears with a better reply(Whew)

lfdahl
 
lfdahl said:
I have factorized $P(x)$ ”the hard way”:
\[P(x)=(x+18)(x-23)(x^2-6x+6)(x^2-14x+32)
\\\\
P(x) = 0 \Rightarrow
x \in\left \{ -18,23,3\pm \sqrt{3},7\pm \sqrt{17} \right \}\]

There must be a much more elegant way. I do hope someone appears with a better reply(Whew)

lfdahl

Hello, Idahl.
Thank you, for taking part in the challenge.

But, what calculations have you realized?

(Muscle) ?

Regards. (Med venlig hilsen) :rolleyes:
 
Hello mente oscura

I have checked the roots numerically and used polynomial division knowing that I was looking for the multiplum of two quadratic polynomials:

$P(x)=(x+18)(x-23)(x^2+ax+b)(x^2+cx+d)$

where:

$(x^2+ax+b)(x^2+cx+d) = x^4-20x^3+122x^2-276x+192$Con vistas mejores :o

lfdahl
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 59 ·
2
Replies
59
Views
142K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K