MHB Solve x^6 + 25x^5 + 192x^4 - 7394x^3 + 48936x^2 - 113304x + 79488=0

  • Thread starter Thread starter mente oscura
  • Start date Start date
  • Tags Tags
    Roots
mente oscura
Messages
167
Reaction score
0
Hello.:)

Find the 6 reals roots:

P(x)=x^6-25x^5-192x^4+7394x^3-48936x^2+113304x-79488

Regards.
 
Mathematics news on Phys.org
I have factorized $P(x)$ ”the hard way”:
\[P(x)=(x+18)(x-23)(x^2-6x+6)(x^2-14x+32)
\\\\
P(x) = 0 \Rightarrow
x \in\left \{ -18,23,3\pm \sqrt{3},7\pm \sqrt{17} \right \}\]

There must be a much more elegant way. I do hope someone appears with a better reply(Whew)

lfdahl
 
lfdahl said:
I have factorized $P(x)$ ”the hard way”:
\[P(x)=(x+18)(x-23)(x^2-6x+6)(x^2-14x+32)
\\\\
P(x) = 0 \Rightarrow
x \in\left \{ -18,23,3\pm \sqrt{3},7\pm \sqrt{17} \right \}\]

There must be a much more elegant way. I do hope someone appears with a better reply(Whew)

lfdahl

Hello, Idahl.
Thank you, for taking part in the challenge.

But, what calculations have you realized?

(Muscle) ?

Regards. (Med venlig hilsen) :rolleyes:
 
Hello mente oscura

I have checked the roots numerically and used polynomial division knowing that I was looking for the multiplum of two quadratic polynomials:

$P(x)=(x+18)(x-23)(x^2+ax+b)(x^2+cx+d)$

where:

$(x^2+ax+b)(x^2+cx+d) = x^4-20x^3+122x^2-276x+192$Con vistas mejores :o

lfdahl
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top