MHB Solves Theorem 3.2.19 in Bland's Abstract Algebra

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading The Basics of Abstract Algebra by Paul E. Bland ...

I am focused on Section 3.2 Subrings, Ideals and Factor Rings ... ...

I need help with another aspect of the proof of Theorem 3.2.19 ... ... Theorem 3.2.19 and its proof reads as follows:
https://www.physicsforums.com/attachments/8270

In the above proof by Bland we read the following:"... ... Hence $$x = you =yxb$$ which implies that $$yb = e$$ ... ...
Can someone please explain exactly how/why $$x = you =yxb$$ implies that $$yb = e$$ ... ...

------------------------------------------------------------------------------------------------------

***EDIT***

Is it simply because $$x = yxb = xyb$$ since R is commutative and then

$$x = xyb \Longrightarrow yb = e$$ ... is that correct?

But how do we know $$x \neq 0$$ ...------------------------------------------------------------------------------------------------------

Peter
 
Last edited:
Physics news on Phys.org
Hi Peter,

We know that $x\ne0$ because the proof says that $xR$ is a nonzero prime ideal.

To be completely correct, you should say that $x=xyb$ implies $x(1-yb)=0$, and this implies $yb=1$ because $x\ne0$ and $R$ is an integral domain.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top