Solving 3-D Dirac Delta Function Homework Question?

Click For Summary

Homework Help Overview

The problem involves evaluating a triple integral that includes a three-dimensional Dirac delta function. The integral is defined over a solid sphere and involves expressions related to vector operations and the delta function's properties.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss how to express the integral explicitly and how to substitute the vector \(\vec{r}'\) into the function \(f(\vec{r})\). There is confusion regarding the application of the delta function and the evaluation of the integral.

Discussion Status

The discussion includes attempts to clarify the setup of the integral and the substitution process. One participant indicates they have resolved their confusion, suggesting some progress in understanding the problem.

Contextual Notes

Participants are working within the constraints of a homework assignment, which may impose specific methods or interpretations of the Dirac delta function. The volume of integration is limited to a solid sphere of radius 4.

Dopplershift
Messages
58
Reaction score
9

Homework Statement


\begin{equation}
\int_V (r^2 - \vec{2r} \cdot \vec{r}') \ \delta^3(\vec{r} - \vec{r}') d\tau
\end{equation}

where:
\begin{equation}
\vec{r}' = 3\hat{x} + 2\hat{y} + \hat{z}
\end{equation}

Where d $\tau$ is the volume element, and V is a solid sphere with radius 4, centered at the origin.

Homework Equations

The Attempt at a Solution



I know the following:

Suppose:
\begin{equation}
\int_V f(r) \delta^3(\vec{r}-\vec{r}') d\tau = f(\vec{r'})
\end{equation}
(if r' is in the volume).

I'm just confused on how to plug in r' into f(r) which is
\begin{equation}
r^2 - 2\vec{r} \cdot \vec{r}'
\end{equation}

Any help to get me started will be much appreciated.
 
Physics news on Phys.org
Dopplershift said:
$$\int_V (r^2 - \vec{2r} \cdot \vec{r}') \ \delta^3(\vec{r} - \vec{r}') d\tau $$where:
$$\vec{r}' = 3\hat{x} + 2\hat{y} + \hat{z}$$ where ##d\tau## is the volume element, and V is a solid sphere with radius 4, centered at the origin.
First, write out your integral as an explicit triple integral.
 
strangerep said:
First, write out your integral as an explicit triple integral.

Okay, so I can setup the integral.

\begin{equation}
\int_v (r^2 - 2\vec{r} \cdot \vec{r}') \delta_x(x-x_0) \delta_y (y-y_0) \delta_z (z-z_0) dx dy dz
\end{equation}

I guess I'm confused how I plug ##\vec{r}'## into f(##\vec{r}##)
 
Never Mind, I figured it out. I was overthinking the problem. Thanks for your help! :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K