Solving a 4x4 Matrix Determinant: Factor/Cofactor & Triangular Form

Click For Summary
The discussion revolves around solving the determinant of a 4x4 matrix using two methods: Factor/Cofactor and reduction to triangular form. The user initially struggles with the Factor/Cofactor method, calculating a determinant of 0, which is confirmed as correct. There is confusion regarding the triangular form method, which is noted to be quicker than the Factor/Cofactor method. Participants emphasize the importance of understanding both techniques and not solely relying on calculators for accuracy. The conversation highlights the usefulness of mastering the triangular form for efficiency in determinant calculations.
phantomAI
Messages
17
Reaction score
0
I seem to be still having problems with solving the determinant of a 4x4 matrix correctly. There are two methods I can use: Factor/Cofactor and reduction to triangular form.

Ex:
[ 1 2 3 4
-5 2 1 0
6 4 3 2
1 1 1 1]

determinant is 2 based on the calculator

Factor/Cofactor: I did:
1*det[2,1,0; 4,3,2; 1,1,1] - 2*det(-5,1,0;6,3,2; 1,1,1]
+ 3*det[-5,2,0; 6,4,2; 1,1,1] -4*det(-5,2,1; 6,4,3; 1,1,1]

From there I would do the individual det of the 3x3s, but when everything is added up I'm getting a determinant of 0! Did I set things up correctly like on the process of setting up the factor/cofactor method.


With the reduction to triangular form, it looks similar to Guassian elimination where I'm trying to get the matrix reduced to upper triangular form. I know that each row swap I make I need to multiply by (-1). When I'm done I mulitply the terms outside the matrix to the diagonals. However, I'm still a bit confused, so can anyone explain it a bit better than my textbook?

Thanks.
 
Physics news on Phys.org
From there I would do the individual det of the 3x3s, but when everything is added up I'm getting a determinant of 0!

Which happens to be the correct value... What makes you think a matrix can't have a determinant of 0?
 
DOH! I shouldn't always rely on the calculator (or at least me inputting wrong values)


Yeah the Det is 0.

I still have some trouble with the Triangular form method though. This technique is suppose to be quicker than the Factor/Cofactor technique right?
 
Yes, a lot quicker. Learn it, it's very useful
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
5
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K