Solving a Meteorite Problem: What Equations Should I Use?

  • Thread starter Thread starter Yoppakung
  • Start date Start date
  • Tags Tags
    Meteorite
AI Thread Summary
The discussion centers on finding the appropriate principles and equations to analyze the impact of a meteorite on a planet's orbit. The initial approach using the law of conservation was hindered by the unknown speed of the meteorite. Participants suggest exploring vector analysis and basic relationships relevant to elliptical orbits. Emphasis is placed on demonstrating effort and seeking guidance from textbooks for foundational concepts. The conversation highlights the need for a clear starting point in applying physics principles to solve the problem.
Yoppakung
Messages
2
Reaction score
1
Homework Statement
A planet orbits around a star in an ellipse. eccentricity is equal to e, while at the farthest point from the star a meteorite crashes into it, the new velocity of the planet is the same size. But as a result of a meteorite impact, the direction of velocity shifts to an angle θ. which is between 0 degrees and 90 degrees if the eccentricity of the planet's new orbit is e'. Find
a. e' in term of e and θ
b. what angle will the major axis be rotated?(term of e , θ )
Relevant Equations
-
I don't know what principle or equation should I start thinking. The one I tried was using the law of conservation, but I found that I didn't know the speed of the meteorite. Anyone have any advice on what principles or equations I should use to get started?
 
Physics news on Phys.org
Yoppakung said:
Homework Statement:: A planet orbits around a star in an ellipse. eccentricity is equal to e, while at the farthest point from the star a meteorite crashes into it, the new velocity of the planet is the same size. But as a result of a meteorite impact, the direction of velocity shifts to an angle θ. which is between 0 degrees and 90 degrees if the eccentricity of the planet's new orbit is e'. Find
a. e' in term of e and θ
b. what angle will the major axis be rotated?(term of e , θ )
Relevant Equations:: -

I don't know what principle or equation should I start thinking. The one I tried was using the law of conservation, but I found that I didn't know the speed of the meteorite. Anyone have any advice on what principles or equations I should use to get started?
Please show us what you did.
 
Orodruin said:
Please show us what you did.

Orodruin said:
Please show us what you did.
As for the conservative equation, I can't find any relation to it as to which point is the starting point or which is the last point and now I'm trying to do is try to vector and solve the equation but it seems like I'm on the wrong track as well. Please suggest what principle I should start with and I will try to figure it out myself.
 
PF rules require you to show your effort, not just vaguely describe it.
 
You may want to search your textbook for some basic relationships relevant for an elliptic orbit.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top