brotherbobby
- 749
- 169
- Homework Statement
- Find the smallest positive value of ##x## in degrees for which ##\boxed{\tan(x+100^{\circ})=\tan(x+50^{\circ})\tan x\tan(x-50^{\circ}){\color{red}{\quad (x=?)}}}##
- Relevant Equations
- 1. Trigonometry : ##\small{\textbf{(a)}\;2\sin A \cos B = \sin(A+B)+\sin(A-B)
\;\;\textbf{(b)}\; \sin C-\sin D = 2\cos\dfrac{C+D}{2}\sin\dfrac{C-D}{2}}##
2. Algebra : The componendo and dividendo ##\quad\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}##
Attempt :
##\begin{align}\tan(x+100^{\circ})&=\tan(x+50^{\circ})\tan x\tan(x-50^{\circ})\\ \Rightarrow \dfrac{\sin(x+100^{\circ})\cos x}{\cos(x+100^{\circ})\sin x}&=\dfrac{\sin(x+50^{\circ})\cos (x-50^{\circ})}{\cos(x+50^{\circ})\sin (x-50^{\circ})}\quad{\text{(Using tan x=sin x/cos x)}}\\ \Rightarrow\dfrac{\sin(2x+100^{\circ})+\sin 100^{\circ}}{\sin(2x+100^{\circ})-\sin 100^{\circ}} &= \dfrac{\sin2x+\sin 100^{\circ}}{\sin2x-\sin 100^{\circ}} \qquad\qquad\quad{\text{(Using 1 (a) above)}} \\ \Rightarrow \dfrac{\cancel{2} \sin(2x+100^{\circ})}{\cancel{2}\sin 100^{\circ}}&= \dfrac{\cancel{2}\sin 2x}{\cancel{2}\sin 100^{\circ}}\qquad\qquad\qquad\qquad{\text{(Using 2 above)}}\\ \Rightarrow \sin(2x+100^{\circ})-\sin 2x&=0\\ 2\cos(2x+50^{\circ})\sin 50^{\circ} &= 0\qquad\qquad\qquad\qquad\qquad\qquad{\text{(Using 1(b) above)}}\\ \Rightarrow 2x+50^{\circ}&=90^{\circ}\\ \Rightarrow \mathbf {x} &= \mathbf{20^{\circ}} \quad {\color{red}{\Huge{\times}}} \end{align}##
Answer from text : The text gives the answer as ##\mathbf{x=30^{\circ}}\quad{\color{DarkGreen}{\Huge{\checkmark}}}##
Request : The text answer matches the L.H.S. and the R.H.S. of the given equation. I'd like to know where have I gone wrong.
##\begin{align}\tan(x+100^{\circ})&=\tan(x+50^{\circ})\tan x\tan(x-50^{\circ})\\ \Rightarrow \dfrac{\sin(x+100^{\circ})\cos x}{\cos(x+100^{\circ})\sin x}&=\dfrac{\sin(x+50^{\circ})\cos (x-50^{\circ})}{\cos(x+50^{\circ})\sin (x-50^{\circ})}\quad{\text{(Using tan x=sin x/cos x)}}\\ \Rightarrow\dfrac{\sin(2x+100^{\circ})+\sin 100^{\circ}}{\sin(2x+100^{\circ})-\sin 100^{\circ}} &= \dfrac{\sin2x+\sin 100^{\circ}}{\sin2x-\sin 100^{\circ}} \qquad\qquad\quad{\text{(Using 1 (a) above)}} \\ \Rightarrow \dfrac{\cancel{2} \sin(2x+100^{\circ})}{\cancel{2}\sin 100^{\circ}}&= \dfrac{\cancel{2}\sin 2x}{\cancel{2}\sin 100^{\circ}}\qquad\qquad\qquad\qquad{\text{(Using 2 above)}}\\ \Rightarrow \sin(2x+100^{\circ})-\sin 2x&=0\\ 2\cos(2x+50^{\circ})\sin 50^{\circ} &= 0\qquad\qquad\qquad\qquad\qquad\qquad{\text{(Using 1(b) above)}}\\ \Rightarrow 2x+50^{\circ}&=90^{\circ}\\ \Rightarrow \mathbf {x} &= \mathbf{20^{\circ}} \quad {\color{red}{\Huge{\times}}} \end{align}##
Answer from text : The text gives the answer as ##\mathbf{x=30^{\circ}}\quad{\color{DarkGreen}{\Huge{\checkmark}}}##
Request : The text answer matches the L.H.S. and the R.H.S. of the given equation. I'd like to know where have I gone wrong.
Last edited: