Solving a Vector Triangle Differential Equation

AI Thread Summary
The discussion focuses on solving a vector triangle differential equation derived from a circular path at angle theta. The equation can be rearranged to express (r thetadot)^2 in terms of other variables, leading to a quadratic form. Participants suggest using the small k approximation to simplify the equation and retain relevant terms up to k^2. It is noted that while the presence of a sin(theta) * thetadot term complicates direct application of the quadratic formula, it can still be managed by manipulating the equation. The overall goal is to integrate the solution from theta = 0 to theta = 2pi.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
See picture below
Relevant Equations
Cosine rule,
Speed vector equation
Screenshot 2021-03-10 at 11.20.08 AM.png

By considering a vector triangle at any point on its circular path, at angle theta from the x -axis,

We can obtain that:
(rw)^2 + (kV)^2 - 2(rw)(kV)cos(90 + theta) = V^2

This can be rearranged to get:
(r thetadot)^2 + (kV)^2 + 2 (r* thetadot)(kV)sin theta = V^2.

I know that I must somehow solve this differential equation in theta, and integrate from theta = 0 to theta = 2pi.

How do I solve this equation?

Thank you!
 
Last edited by a moderator:
  • Like
Likes Fikremariam
Physics news on Phys.org
phantomvommand said:
How do I solve this equation?
You are told k is very small, so you need to make an approximation.
And you know the extra is of order k2, so you know which terms to keep.
I would start by solving the quadratic.
 
  • Like
Likes phantomvommand
haruspex said:
You are told k is very small, so you need to make an approximation.
And you know the extra is of order k2, so you know which terms to keep.
I would start by solving the quadratic.
Thank you! I was thinking that the quadratic equation formula couldn’t be applied to solve for thetadot because there is a sintheta*thetadot term. This doesn’t pose a problem I suppose?
 
phantomvommand said:
Thank you! I was thinking that the quadratic equation formula couldn’t be applied to solve for thetadot because there is a sintheta*thetadot term. This doesn’t pose a problem I suppose?
You can solve the quadratic for ##\dot\theta##, creating a trig term inside a square root. But then you can use the small k approximation to get rid of the square root. You may need to use it again. Just make sure to keep terms up to k2.
 
  • Like
Likes phantomvommand
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top