Solving Algebraic Inequality with $n$ Positive Real Numbers

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The discussion focuses on proving the inequality involving $n$ positive real numbers: $$\frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+ ... + \frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1} \geq x_1+x_2+...+x_n$$ using the Cauchy–Schwarz inequality. Participants demonstrated the proof by applying the inequality to specific vectors and manipulating the resulting expressions to establish the desired result. The proof was confirmed to be valid for all positive real numbers and was appreciated by the community members.

PREREQUISITES
  • Cauchy–Schwarz inequality
  • Understanding of algebraic manipulation
  • Knowledge of inequalities in mathematics
  • Familiarity with sequences of positive real numbers
NEXT STEPS
  • Study advanced applications of the Cauchy–Schwarz inequality in various mathematical contexts
  • Explore other proofs of algebraic inequalities, such as those involving AM-GM or Jensen's inequality
  • Learn about vector spaces and their properties in relation to inequalities
  • Investigate the implications of inequalities in optimization problems
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in understanding and proving inequalities involving real numbers.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given $n$ positive real numbers: $x_1,x_2,...,x_n$.

Show, that:

\[\frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+ ... + \frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1} \geq x_1+x_2+...+x_n\]
 
Mathematics news on Phys.org
lfdahl said:
Given $n$ positive real numbers: $x_1,x_2,...,x_n$.

Show, that:

\[\frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+ ... + \frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1} \geq x_1+x_2+...+x_n\]
[sp]Apply the Cauchy–Schwarz inequality $|\mathbf{x.y}|^2 \leqslant \|\mathbf{x}\|^2\|\mathbf{y}\|^2$ to the vectors $$\mathbf{x} = \left(\frac{x_1}{\sqrt{x_2}},\frac{x_2}{\sqrt{x_3}},\ldots,\frac{x_{n-1}}{\sqrt{x_n}},\frac{x_n}{\sqrt{x_1}}\right), \ \mathbf{y} = \left(\sqrt{x_2},\sqrt{x_3},\ldots,\sqrt{x_n},\sqrt{x_1}\right),$$ getting $$(x_1+x_2+\ldots+x_n)^2 \leqslant \left(\frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+ \ldots + \frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1}\right)\left(x_2+x_3 + \ldots + x_n+x_1\right).$$ Then divide both sides by $x_1+x_2+\ldots+x_n$ to get the result.[/sp]
 
Good job, Opalg! Thankyou for your participation!

Your solution was exactly, what I had in mind!
 
Last edited:
An alternative solution can be found here:

By the AM-GM inequality, we have:

\[\frac{x_i^2}{x_{i+1}}+x_{i+1} \geq 2x_i \\\\ \Rightarrow \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+...+\frac{x_n^2}{x_1}+x_1+x_2+...+x_n \geq 2\left ( x_1+x_2+...+x_n \right )\\\\ \Rightarrow \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+...+\frac{x_n^2}{x_1} \geq x_1+x_2+...+x_n\]
 
We have the following high school proof

[sp]Given, $$x_1,x_2,...x_n$$ positive real Nos we have:
$$(\frac{x_1}{\sqrt x_2}X+\sqrt x_2)^2+...(\frac{x_{n-1}}{\sqrt x_n}+\sqrt x_n)^2+(\frac{x_n}{\sqrt x_1}+\sqrt x_1)^2\geq 0$$
,which is true for all n and for all X............1
..........OR...........
$$(\frac{{x_1}^2}{x_2}+...\frac{x_{n-1}^2}{x_n}+\frac{{x_n}^2}{x_1})X^2+2(x_1+x_2+...x_n)X+(x_1+x_2+...x_n)\geq 0$$

Put $$A=(\frac{{x_1}^2}{x_2}+...\frac{x_{n-1}^2}{x_n}+\frac{{x_n}^2}{x_1})$$
$$B= x_1+x_2+...x_n $$ and (1) becomes:

$$AX^2+2BX+B\geq 0$$............(2)
.........OR.......
$$A(X+\frac{B}{A})^2+\frac{AB-B^2}{A}\geq 0$$...............3

Now since its equivalent (1) is true for all X ,hence (3) will be true for all X and particularly for $$X=-\frac{B}{A}$$.

And (3) becomes :

$$AB-B^2\geq 0$$

.........OR.........

$$A\geq B$$

Which is the desired inequality

Note : the same type of proof i suggested for the thread "high school inequality 3" but in a kind of backwards working .There the initial inequality should be:

$$(a_1X+b_1)^2+...(a_nX+b_1)^2\geq 0$$ [/sp]
 
solakis said:
We have the following high school proof

[sp]Given, $$x_1,x_2,...x_n$$ positive real Nos we have:
$$(\frac{x_1}{\sqrt x_2}X+\sqrt x_2)^2+...(\frac{x_{n-1}}{\sqrt x_n}+\sqrt x_n)^2+(\frac{x_n}{\sqrt x_1}+\sqrt x_1)^2\geq 0$$
,which is true for all n and for all X............1
..........OR...........
$$(\frac{{x_1}^2}{x_2}+...\frac{x_{n-1}^2}{x_n}+\frac{{x_n}^2}{x_1})X^2+2(x_1+x_2+...x_n)X+(x_1+x_2+...x_n)\geq 0$$

Put $$A=(\frac{{x_1}^2}{x_2}+...\frac{x_{n-1}^2}{x_n}+\frac{{x_n}^2}{x_1})$$
$$B= x_1+x_2+...x_n $$ and (1) becomes:

$$AX^2+2BX+B\geq 0$$............(2)
.........OR.......
$$A(X+\frac{B}{A})^2+\frac{AB-B^2}{A}\geq 0$$...............3

Now since its equivalent (1) is true for all X ,hence (3) will be true for all X and particularly for $$X=-\frac{B}{A}$$.

And (3) becomes :

$$AB-B^2\geq 0$$

.........OR.........

$$A\geq B$$

Which is the desired inequality

Note : the same type of proof i suggested for the thread "high school inequality 3" but in a kind of backwards working .There the initial inequality should be:

$$(a_1X+b_1)^2+...(a_nX+b_1)^2\geq 0$$ [/sp]
Well done, solakis! Thankyou for your participation!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K