r-soy
- 170
- 1
I like Serena said:Welcome to MHB, rsoy! :)
Your problem seems to be that you assume $\dfrac{x+y}{x^2+y^2} = \dfrac 1 {x+y}$.
But this is not true.So instead your next step for the first part of the expression would be:
$$\begin{aligned} \int^y \frac{x+y}{x^2+y^2}dy &= \int^y \frac{x}{x^2+y^2}dy &&+ \int^y \frac{y}{x^2+y^2}dy &\\
&= \arctan \left(\frac y x \right) &&+ \frac 1 2 \ln(x^2+y^2) &+ C \end{aligned}$$
ZaidAlyafey said:Shouldn't the resultant constant be a function of x !