Solving Clifford Algebra Equation - Need Help!

Click For Summary

Discussion Overview

The discussion revolves around solving an equation related to Clifford algebra, specifically involving wedge products and determinants. Participants explore the implications of the expression and its results, as well as the mathematical steps needed to prove certain outcomes. The scope includes theoretical and mathematical reasoning.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an expression involving a wedge product and seeks assistance in solving it.
  • Some participants suggest testing specific values for k (1, 2, 3) to explore the expression further.
  • Another participant points out that the original expression may not be an equation but rather just an expression, prompting a request for clarification on what is being proved.
  • A participant shares a result involving the square root of the sum of squared determinants, claiming it as the answer derived from special cases.
  • Some participants express uncertainty about the nature of the wedge product, with one suggesting it should not be a scalar.
  • There is a discussion about the relationship between the wedge product and the cross product, with differing views on whether it is the Hodge dual of the cross product or a bivector.
  • Several participants request detailed steps for specific cases (k=2 and k=3) to better understand the calculations involved.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation of the wedge product or the correct approach to proving the expression. Multiple competing views remain regarding the nature of the results and the mathematical steps required.

Contextual Notes

There are limitations in the clarity of the original expression and the assumptions regarding the mathematical operations involved. The discussion reflects varying levels of understanding of Clifford algebras and related concepts.

dimension10
Messages
371
Reaction score
0
I was trying to solve the following equation:

\bigwedge\limits_{j=1}^{k}\begin{bmatrix}<br /> a_{1,j}\\ <br /> a_{2,j}\\ <br /> :\\<br /> .\\<br /> a_{k+1,j}<br /> \end{bmatrix}

Does anyone know how I can solve it? Thanks in advance.
 
Physics news on Phys.org
try k=1,2,3 etc.
 
algebrat said:
try k=1,2,3 etc.

Actually, I already know what that expression results in. I was trying to prove it.
 
dimension10 said:
I was trying to solve the following equation:

\bigwedge\limits_{j=1}^{k}\begin{bmatrix}<br /> a_{1,j}\\ <br /> a_{2,j}\\ <br /> :\\<br /> .\\<br /> a_{k+1,j}<br /> \end{bmatrix}

Does anyone know how I can solve it? Thanks in advance.

There is no equation, just an expression. It is not clear what you are trying to solve.

dimension10 said:
Actually, I already know what that expression results in. I was trying to prove it.

Please show us the result. Please tell us exactly what you are trying to prove.
 
algebrat said:
There is no equation, just an expression. It is not clear what you are trying to solve.

Ya I realized that later. Just made a typo error.
algebrat said:
Please show us the result. Please tell us exactly what you are trying to prove.

\sqrt {\sum\limits_{j = 1}^{k + 1} {{{\det }^2}\left( {{{{\mathop{\rm cross}\nolimits} }_j}\left( {\mathop {\bf{A}}\limits_{(k + 1) \times k} } \right)} \right)} }

where A_(k+1)Xk is the matrix formed by augmenting the vectors together and the cross_j function means crossing out the jth row of the matrix A_(k+1)Xk.

I'm trying to prove that \sqrt {\sum\limits_{j = 1}^{k + 1} {{{\det }^2}\left( {{{{\mathop{\rm cross}\nolimits} }_j}\left( {\mathop {\bf{A}}\limits_{(k + 1) \times k} } \right)} \right)} } is the answer, since I found it by finding the special cases where k=1,2,3.
 
Last edited:
I guess I know very little about clifford algebras, I was expecting a wedge not to be a scalar, which I am guessing is what the root of sum of determinants squared would give.
 
algebrat said:
I guess I know very little about clifford algebras, I was expecting a wedge not to be a scalar, which I am guessing is what the root of sum of determinants squared would give.

Oops! Sorry, you are right. I mean the determinant of the exterior product is equal to \sqrt {\sum\limits_{j = 1}^{k + 1} {{{\det }^2}\left( {{{{\mathop{\rm cross}\nolimits} }_j}\left( {\mathop {\bf{A}}\limits_{(k + 1) \times k} } \right)} \right)} }
 
For k=2 I would have guessed the cross product.

Ah
 
algebrat said:
For k=2 I would have guessed the cross product.

Ah

No... I think it is the hodge dual of the cross product, actually. The wedge alone would be a bivector in that case.
 
  • #10
Show us the steps for k=2 and/or 3
 
  • #11
algebrat said:
Show us the steps for k=2 and/or 3

\begin{array}{l}<br /> \begin{array}{*{20}{l}}<br /> {\left\| {\left[ {\begin{array}{*{20}{l}}<br /> \alpha \\<br /> \gamma \\<br /> \varepsilon <br /> \end{array}} \right] \wedge \left[ {\begin{array}{*{20}{l}}<br /> \beta \\<br /> \delta \\<br /> \zeta <br /> \end{array}} \right]} \right\| = \left\| {\alpha \delta \left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2}} \right) + \alpha \zeta \left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_3}} \right) + \gamma \beta \left( {{{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_1}} \right) + \gamma \zeta \left( {{{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3}} \right) + \varepsilon \beta \left( {{{{\bf{\hat e}}}_3} \wedge {{{\bf{\hat e}}}_1}} \right) + \varepsilon \delta \left( {{{{\bf{\hat e}}}_3} \wedge {{{\bf{\hat e}}}_2}} \right)} \right\|}\\<br /> { = \left\| {\left( {\alpha \delta - \beta \gamma } \right)\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2}} \right) + \left( {\alpha \zeta - \beta \varepsilon } \right)\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_3}} \right) + \left( {\gamma \zeta - \delta \varepsilon } \right)\left( {{{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3}} \right)} \right\|}\\<br /> { = \left\| {\det \left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta \\<br /> \gamma &amp;\delta <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2}} \right) + \det \left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta \\<br /> \varepsilon &amp;\zeta <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_3}} \right) + \det \left[ {\begin{array}{*{20}{c}}<br /> \gamma &amp;\delta \\<br /> \varepsilon &amp;\zeta <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3}} \right)} \right\|}<br /> \end{array}\\<br /> = \sqrt {{{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta \\<br /> \gamma &amp;\delta <br /> \end{array}} \right] + {{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta \\<br /> \varepsilon &amp;\zeta <br /> \end{array}} \right] + {{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \gamma &amp;\delta \\<br /> \varepsilon &amp;\zeta <br /> \end{array}} \right]} <br /> \end{array}

\begin{array}{l}<br /> \left\| {\left[ \begin{array}{l}<br /> \alpha \\<br /> \delta \\<br /> \eta \\<br /> \kappa <br /> \end{array} \right] \wedge \left[ \begin{array}{l}<br /> \beta \\<br /> \varepsilon \\<br /> \theta \\<br /> \lambda <br /> \end{array} \right] \wedge \left[ \begin{array}{l}<br /> \gamma \\<br /> \zeta \\<br /> \iota \\<br /> \mu <br /> \end{array} \right]} \right\| = \left\| {\left( {\alpha {{{\bf{\hat e}}}_1} + \delta {{{\bf{\hat e}}}_2} + \eta {{{\bf{\hat e}}}_3} + \kappa {{{\bf{\hat e}}}_4}} \right) \wedge \left( {\beta {{{\bf{\hat e}}}_1} + \varepsilon {{{\bf{\hat e}}}_2} + \theta {{{\bf{\hat e}}}_3} + \lambda {{{\bf{\hat e}}}_4}} \right) \wedge \left( {\gamma {{{\bf{\hat e}}}_1} + \zeta {{{\bf{\hat e}}}_2} + \iota {{{\bf{\hat e}}}_3} + \mu {{{\bf{\hat e}}}_4}} \right)} \right\|\\<br /> {\rm{ }} = \left| {\left| {\left( {\alpha \varepsilon \iota - \delta \beta \iota - \alpha \theta \zeta + \eta \beta \zeta + \delta \theta \gamma - \eta \varepsilon \gamma } \right)\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3}} \right) + } \right.} \right.\\<br /> {\rm{ }}\left( {\alpha \varepsilon \mu - \delta \beta \mu - \alpha \lambda \zeta + \kappa \beta \zeta - \delta \lambda \gamma + \kappa \varepsilon \gamma } \right)\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_4}} \right) + \\<br /> {\rm{ }}\left( {\alpha \theta \mu - \eta \beta \mu - \alpha \lambda \iota + \kappa \beta \iota - \eta \lambda \gamma + \kappa \theta \gamma } \right)\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_3} \wedge {{{\bf{\hat e}}}_4}} \right) + \\<br /> \left. {\left. {{\rm{ }}\left( {\delta \theta \mu - \eta \varepsilon \mu - \delta \lambda \iota + \kappa \varepsilon \iota - \eta \lambda \zeta + \kappa \theta \zeta } \right)\left( {{{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3} \wedge {{{\bf{\hat e}}}_4}} \right)} \right|} \right|\\<br /> {\rm{ }} = \left| {\left| {\det \left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta &amp;\gamma \\<br /> \delta &amp;\varepsilon &amp;\zeta \\<br /> \eta &amp;\theta &amp;\iota <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3}} \right) + } \right.} \right.\\<br /> {\rm{ }}\det \left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta &amp;\gamma \\<br /> \delta &amp;\varepsilon &amp;\zeta \\<br /> \kappa &amp;\lambda &amp;\mu <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_4}} \right) + \\<br /> {\rm{ }}\det \left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta &amp;\gamma \\<br /> \eta &amp;\theta &amp;\iota \\<br /> \kappa &amp;\lambda &amp;\mu <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_1} \wedge {{{\bf{\hat e}}}_3} \wedge {{{\bf{\hat e}}}_4}} \right) + \\<br /> \left. {\left. {{\rm{ }}\det \left[ {\begin{array}{*{20}{c}}<br /> \delta &amp;\varepsilon &amp;\zeta \\<br /> \eta &amp;\theta &amp;\iota \\<br /> \kappa &amp;\lambda &amp;\mu <br /> \end{array}} \right]\left( {{{{\bf{\hat e}}}_2} \wedge {{{\bf{\hat e}}}_3} \wedge {{{\bf{\hat e}}}_4}} \right)} \right|} \right|\\<br /> {\rm{ }} = \sqrt {{{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta &amp;\gamma \\<br /> \delta &amp;\varepsilon &amp;\zeta \\<br /> \eta &amp;\theta &amp;\iota <br /> \end{array}} \right] + {{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta &amp;\gamma \\<br /> \delta &amp;\varepsilon &amp;\zeta \\<br /> \kappa &amp;\lambda &amp;\mu <br /> \end{array}} \right] + {{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \alpha &amp;\beta &amp;\gamma \\<br /> \eta &amp;\theta &amp;\iota \\<br /> \kappa &amp;\lambda &amp;\mu <br /> \end{array}} \right] + {{\det }^2}\left[ {\begin{array}{*{20}{c}}<br /> \delta &amp;\varepsilon &amp;\zeta \\<br /> \eta &amp;\theta &amp;\iota \\<br /> \kappa &amp;\lambda &amp;\mu <br /> \end{array}} \right]} <br /> \end{array}

But when I tried it for the general case, it was not possible.
 
  • #12
maybe you could somehow argue that the coefficient of e_1^...^e_{j-1}^e_{j+1}^...^e_{k+1} would be the det of cross_j(A).
 
  • #13
algebrat said:
maybe you could somehow argue that the coefficient of e_1^...^e_{j-1}^e_{j+1}^...^e_{k+1} would be the det of cross_j(A).

Thanks a lot! I think that you're right! Thanks again!
 
  • #14
Basic Geometric Algebra

See attached file DET.pdf. The thing to note is that in the case of an orthogonal basis e1,...,en we have e1^...^en = e1...en (wedge product is the same as the geometric/Clifford product).

Detailed note based on "Geometric Algebra for Physicists" by Doran and Laseby is at

https://github.com/brombo/GA
 

Attachments

Last edited by a moderator:

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K