MHB Solving Congruences with Polynomials: A Prime Challenge

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
I'm having trouble with the following question:

Construct a polynomial $q(x) \neq 0$ with integer coefficients which has no rational roots but is such that for any prime $p$ we can solve the congruence $q(x) \equiv 0 \mod p$ in the integers.

Any hints on how to even start the problem will be strongly appreciated. (Nod) Thanks.
 
Physics news on Phys.org
Fantini said:
I'm having trouble with the following question:

Construct a polynomial $q(x) \neq 0$ with integer coefficients which has no rational roots but is such that for any prime $p$ we can solve the congruence $q(x) \equiv 0 \mod p$ in the integers.

Any hints on how to even start the problem will be strongly appreciated. (Nod) Thanks.

Hi Fantini, :)

Let me give you a hint. Consider the Fermat's little theorem and see whether you can think of a polynomial satisfying the given conditions.

Kind Regards,
Sudharaka.
 
Thank you Sudharaka, but now I have found the solution. :) I will post it later.

Cheers.
 
Fantini said:
Thank you Sudharaka, but now I have found the solution. :) I will post it later.

Cheers.

You are welcome. :) I was thinking about the polynomial \(q(x)=x^p-x\) so that the congruence \(q(x)\equiv 0(\mbox{mod } p)\) could be solved in the integers (by the Fermat's little theorem), but alas \(q\) has rational roots (examples are \(x=0,1\)). So to make it rational root less, we can do a little improvement. Take,

\[q(x)=x^p-x+p\]

By the Rational root theorem the list of possible rational roots that this polynomial could have are \(\pm 1,\pm p\). Clearly, \(x= \pm 1, p\) do not satisfy the equation \(q(x)=0\). Let \(x=-p\) be a root of \(q(x)\). Then,

\[q(-p)=0\Rightarrow (-p)^p+2p=0\]

If \(p\) is even, \(p=2\) and we have \(p^p+2p=8=0\) which is contradictory. If \(p\) is odd,

\[\Rightarrow -p^p+2p=0\Rightarrow p^{p-1}=2\]

Since \(p\) is an odd prime, \(p\geq 3\). Hence the equation \(p^{p-1}=2\) cannot be satisfied. Therefore we see that there are no rational roots for,

\[q(x)=x^p-x+p\]

Interested to see your solution. :)
 
A quick internet search comes up with the polynomial $p(x) = (x^2-2)(x^2-3)(x^2-6)$ (see here, for example).

The reason that works is that if 2 and 3 are both quadratic non-residues mod $p$ then their product 6 will be a quadratic residue. On the other hand, $p(x)$ clearly has no rational roots.
 
The solution is similar to what Opalg's search found. We considered the polynomial $q(x) = (x^2 +1)(x^2 +2)(x^2 -2)$ and, using elementary number theory arguments such as Legendre's symbol and quadratic residues, proved it satisfied the conditions of the statement. :D

Thanks for the search link, Opalg!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top