I'm taking a calculus-based physics course, and we were solving a simple differential equation for a model of drag by separating variables: (where A is some arbitrary constant)(adsbygoogle = window.adsbygoogle || []).push({});

[tex]m \frac {dv} {dt} = -A v^2[/tex]

[tex]- \frac {m} {A} \frac {dv} {v^2} = dt[/tex]

My teacher then integrates both sides, but unlike in my calculus class, he uses definite integrals:

[tex]- \frac {m} {A} \int_{v_i}^{v_f} v^{-2} dv = \int_{t_i}^{t_f} dt[/tex]

Initial time will be zero for simplicity, so using the FTC:

[tex]\frac {m} {A} (\frac {1} {v_f} - \frac {1} {v_i}) = t_f[/tex]

I understand how to solve it as is done from my calculus class, using indefinite integrals and solving for the constant of integration [itex]C = \frac {m} {A v_i}[/itex], which gives an equivalent result.

So what's the merit of using one method as opposed to another? It seems to me like using definite integrals is quicker.

So if I do physics problems this way, why should/shouldn't I do the initial-value problems I get in calculus using definite integrals like this? Like when it asks to solve [itex]dy/dx = 3y, y(2) = 5[/itex] or such, what's wrong with doing [itex]\frac {1} {3} \int_{5}^{y_f} y^{-1} dy = \int_{2}^{x_f} dx[/itex]? Both methods give the same result, and again, it seems quicker to do this the definite integral way rather than solving for C.

I'm guessing that it might be harder to understand what's going on as things get more complex, or something? Or I guess using subscripts on variables to really indicate evaluating the function for the independent variable is problematic?

(Whew, sorry for the length, but this has been bugging me for a while.)

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Solving differential equations with definite integrals?

Loading...

Similar Threads - Solving differential equations | Date |
---|---|

I Solving an integral | Monday at 4:38 PM |

I Solving a definite integral by differentiation under the integral | Mar 23, 2017 |

Solving integration by parts using derivatives vs differentials? | Aug 20, 2011 |

Problem with solve two differential equations. | Jul 21, 2011 |

Solve second order differential equation | Sep 19, 2007 |

**Physics Forums - The Fusion of Science and Community**