Solving Evaluate 3 * sqr(2): Understanding the Method

  • Context: MHB 
  • Thread starter Thread starter Ziggletooth
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on evaluating expressions involving square roots, specifically the confusion surrounding the evaluation of 3 * sqrt(2) and 2 * sqrt(16). The correct evaluation of 3 * sqrt(2) is sqrt(18), not 18, while 2 * sqrt(16) simplifies correctly to 8. The key takeaway is that one cannot simply square the factors and eliminate the square root without proper context. Understanding the distinction between evaluating and simplifying square roots is crucial for accurate mathematical operations.

PREREQUISITES
  • Understanding of square roots and their properties
  • Familiarity with basic algebraic manipulation
  • Knowledge of simplifying expressions involving square roots
  • Ability to differentiate between evaluating and simplifying mathematical expressions
NEXT STEPS
  • Learn how to simplify square roots, focusing on expressions like sqrt(a*b)
  • Study the properties of square roots and their applications in algebra
  • Explore the concept of evaluating expressions versus simplifying them
  • Practice problems involving square roots and algebraic expressions for better understanding
USEFUL FOR

Students, educators, and anyone looking to clarify their understanding of square roots and algebraic expressions will benefit from this discussion.

Ziggletooth
Messages
5
Reaction score
0
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
 
Mathematics news on Phys.org
You correctly stated that $$2 \sqrt{16} \neq 64$$.

Why would you believe that $$3 \sqrt{2}=18$$? These two are not equal in the same way that the first two are not equal.
 
Ziggletooth said:
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18
Yes, you can but how does that help you evaluate [math]3\sqrt{2}[/math]?

I suspect that you are thinking, instead, of "taking the '3' inside the square root":
[math]3\sqrt{2}= \sqrt{9(2)}= \sqrt{18}[/math].

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64
But it does work: [math]2\sqrt{16}= \sqrt{4(16)}=\sqrt{64}[/math]

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
You can't just "throw away" the square root. If the problem is to find a\sqrt{b} then you can "take the a inside the square root" to get [math]\sqrt{a^2b}[/math] but you still have to take the square root!

Actually most people would consider "simplifying" a square root to be going the other way: to simplify [math]\sqrt{18}[/math] write it as [math]\sqrt{9(2)}= 3\sqrt{2}[/math].
 
I'm sorry it appears the source of my confusion was very much that I assumed I was evaluating something when in fact I was originally doing these operations to make it easier to compare which of two expressions were greater. That wasn't clear to me at the time so I was confused why it wasn't working is some cases but it depended on the context of the numbers I was comparing.

Thanks
 

Similar threads

Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
998
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 68 ·
3
Replies
68
Views
12K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K