MHB Solving Evaluate 3 * sqr(2): Understanding the Method

  • Thread starter Thread starter Ziggletooth
  • Start date Start date
Ziggletooth
Messages
5
Reaction score
0
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
 
Mathematics news on Phys.org
You correctly stated that $$2 \sqrt{16} \neq 64$$.

Why would you believe that $$3 \sqrt{2}=18$$? These two are not equal in the same way that the first two are not equal.
 
Ziggletooth said:
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18
Yes, you can but how does that help you evaluate [math]3\sqrt{2}[/math]?

I suspect that you are thinking, instead, of "taking the '3' inside the square root":
[math]3\sqrt{2}= \sqrt{9(2)}= \sqrt{18}[/math].

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64
But it does work: [math]2\sqrt{16}= \sqrt{4(16)}=\sqrt{64}[/math]

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
You can't just "throw away" the square root. If the problem is to find a\sqrt{b} then you can "take the a inside the square root" to get [math]\sqrt{a^2b}[/math] but you still have to take the square root!

Actually most people would consider "simplifying" a square root to be going the other way: to simplify [math]\sqrt{18}[/math] write it as [math]\sqrt{9(2)}= 3\sqrt{2}[/math].
 
I'm sorry it appears the source of my confusion was very much that I assumed I was evaluating something when in fact I was originally doing these operations to make it easier to compare which of two expressions were greater. That wasn't clear to me at the time so I was confused why it wasn't working is some cases but it depended on the context of the numbers I was comparing.

Thanks
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top