MHB Solving Evaluate 3 * sqr(2): Understanding the Method

  • Thread starter Thread starter Ziggletooth
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating expressions involving square roots, specifically 3 * sqrt(2) and 2 * sqrt(16). The confusion arises from incorrectly applying the method of squaring both factors, leading to incorrect conclusions about equality. It is clarified that while one can manipulate the expressions, the square root must be properly addressed to avoid errors. The key takeaway is that simplifying square roots involves understanding the context and correctly applying mathematical operations, rather than merely squaring factors. This highlights the importance of careful evaluation in mathematical expressions.
Ziggletooth
Messages
5
Reaction score
0
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
 
Mathematics news on Phys.org
You correctly stated that $$2 \sqrt{16} \neq 64$$.

Why would you believe that $$3 \sqrt{2}=18$$? These two are not equal in the same way that the first two are not equal.
 
Ziggletooth said:
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18
Yes, you can but how does that help you evaluate [math]3\sqrt{2}[/math]?

I suspect that you are thinking, instead, of "taking the '3' inside the square root":
[math]3\sqrt{2}= \sqrt{9(2)}= \sqrt{18}[/math].

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64
But it does work: [math]2\sqrt{16}= \sqrt{4(16)}=\sqrt{64}[/math]

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
You can't just "throw away" the square root. If the problem is to find a\sqrt{b} then you can "take the a inside the square root" to get [math]\sqrt{a^2b}[/math] but you still have to take the square root!

Actually most people would consider "simplifying" a square root to be going the other way: to simplify [math]\sqrt{18}[/math] write it as [math]\sqrt{9(2)}= 3\sqrt{2}[/math].
 
I'm sorry it appears the source of my confusion was very much that I assumed I was evaluating something when in fact I was originally doing these operations to make it easier to compare which of two expressions were greater. That wasn't clear to me at the time so I was confused why it wasn't working is some cases but it depended on the context of the numbers I was comparing.

Thanks
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top