Solving Factorial Algebra: P(n, 4) = 40[P(n-1, 2)]

  • Thread starter Thread starter DecayProduct
  • Start date Start date
  • Tags Tags
    Algebra Factorial
Click For Summary
The equation P(n, 4) = 40[P(n-1, 2)] simplifies to n!/(n-4)! = 40[(n-1)!/(n-3)!]. By applying the definition of factorial, the left side reduces to n(n-1)(n-2)(n-3), while the right side similarly simplifies. After canceling common factors, a quartic equation emerges, leading to three positive roots and one negative root. The negative solution is disregarded, leaving n=8 as the valid positive integer solution. Understanding factorials is crucial for solving such problems effectively.
DecayProduct
Messages
67
Reaction score
0

Homework Statement



P(n, 4) = 40[P(n-1, 2)]

Homework Equations



?

The Attempt at a Solution



I boiled this down to the equation n!/(n-4)! = 40[(n-1)!/(n-3)!]. The problem is, I have no idea how to perform the correct operations on these factorials. I found the answer to be n = 8, but this was just trial and error. The factorials don't seem to behave like regular numbers, where cross multiplication or LCD would work. The textbook this comes from is old, and only glances over the factorials. I suppose a teacher's edition would provide more info. Any hints or tips, as usual, are appreciated.
 
Physics news on Phys.org
Just use the definition of the factorial to simplify:

n! = n(n{-}1)(n{-}2)\ldots \cdot 2\cdot 1

(n{-}4)! = (n{-}4)(n{-}3)\ldots \cdot 2\cdot 1

So

n!/(n{-}4)! = n(n{-}1)(n{-}2)(n{-}3).

Similarly on the right-hand side. Now cancel common factors. You should end up with a quadratic equation in n, with only one positive integer solution.
 
Avodyne said:
Just use the definition of the factorial to simplify:

n! = n(n{-}1)(n{-}2)\ldots \cdot 2\cdot 1

(n{-}4)! = (n{-}4)(n{-}3)\ldots \cdot 2\cdot 1

So

n!/(n{-}4)! = n(n{-}1)(n{-}2)(n{-}3).

Similarly on the right-hand side. Now cancel common factors. You should end up with a quadratic equation in n, with only one positive integer solution.

I'm sorry, I guess I'm just thick! My first experience with factorials is with this problem, so I just don't get it. Since I don't know n, how can I know how far to carry the (n-x)? As in here when you you say: n! = n(n{-}1)(n{-}2)\ldots \cdot 2\cdot 1

I mean, n could be anything, so (n-1), (n-2),... (n-500)? An explanation of the factorial definition you stated would be great.
 
DecayProduct said:
I'm sorry, I guess I'm just thick!
Okay then, here's n! and (n-4)! again, but I expanded Avodyne's definition:
n! = n(n{-}1)(n{-}2)(n{-}3)(n{-}4)(n{-}5)\ldots \cdot 2\cdot 1
and
(n{-}4)! = (n{-}4)(n{-}5)\ldots \cdot 2\cdot 1

Now,
\frac{n!}{(n{-}4)!} = \frac{n(n{-}1)(n{-}2)(n{-}3)(n{-}4)(n{-}5)\ldots \cdot 2\cdot 1}{(n{-}4)(n{-}5)\ldots \cdot 2\cdot 1}

Notice how the factors (n - 4), (n - 5), all the way to 1, cancel out? So you're left over with

\frac{n!}{(n{-}4)!} = n(n{-}1)(n{-}2)(n{-}3).

Now try with the right hand side and see what you get.

I actually ended up with a quartic, not a quadratic, with three positive roots and one negative one. The negative solution can be discarded, and so can two of the positive solutions (because they are small enough that makes (n-4) negative), which means the remaining positive number is the answer (which, as you said, is n=8).01
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
11K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 6 ·
Replies
6
Views
9K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K