Solving for Compression of Unstretched Spring

Click For Summary
The problem involves two blocks colliding, with one block at rest against an unstretched spring. When block 1 collides with block 2, they stick together, and their combined kinetic energy is converted into potential energy stored in the spring. The relevant equations include conservation of momentum and the spring force equation, Fsp = -kx. To find the distance the spring is compressed, first calculate the velocity of the combined blocks after the collision, then use that to determine the kinetic energy, which equals the potential energy in the spring at maximum compression. The correct compression distance is determined to be 0.305 m.
DavidAp
Messages
44
Reaction score
0
Block 2 (mass 1.10 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 144 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed v1 = 3.60 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?

Answer 0.305 m



Relavant Equations
Fsp = -kx
______________________________

How do I solve for this? I'm given k but what is Fsp? Is there any other way to solve for Fsp?

After scratching my head for a good while I tried something out of pure desperation, despite my gut feeling that it was wrong. I said,

m1v1^2 + m2v2^2 = m1u1^2 + m2u2^2
m1v1^2 = m2u2^2
u2^2 = (m1v1^2)/m2
u2 = sqrt((m1v1^2)/m2)
u2 = sqrt((1.7(3.6)^2)/1.10) = 4.4753

Being unsure about the relationship I said u2 = Fsp. Therefore,
Fsp = -kx
4.4753 = -144x
4.4753/-144 = x
-0.03107 = x

Now, I am way off with this attempt but I'm not quite sure how I'm suppose to approach this problem. Can somebody help explain to me what, and most importantly why, I have to do to solve this problem? I'm having difficulty with this section so baby steps is appreciated :).

Thank you for taking the time to review my question.
 
Physics news on Phys.org


DavidAp said:
Block 2 (mass 1.10 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 144 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed v1 = 3.60 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?

Answer 0.305 m



Relavant Equations
Fsp = -kx
______________________________

How do I solve for this? I'm given k but what is Fsp? Is there any other way to solve for Fsp?

After scratching my head for a good while I tried something out of pure desperation, despite my gut feeling that it was wrong. I said,

m1v1^2 + m2v2^2 = m1u1^2 + m2u2^2
m1v1^2 = m2u2^2
u2^2 = (m1v1^2)/m2
u2 = sqrt((m1v1^2)/m2)
u2 = sqrt((1.7(3.6)^2)/1.10) = 4.4753

Being unsure about the relationship I said u2 = Fsp. Therefore,
Fsp = -kx
4.4753 = -144x
4.4753/-144 = x
-0.03107 = x

Now, I am way off with this attempt but I'm not quite sure how I'm suppose to approach this problem. Can somebody help explain to me what, and most importantly why, I have to do to solve this problem? I'm having difficulty with this section so baby steps is appreciated :).

Thank you for taking the time to review my question.

I think you need to use energy stored in the spring.

When those two masses collide, conservation of momentum will enable you to calculate the speed with which the blocks move after collision. From that velocity you can calculate the Kinetic energy of the blocks.
When they stop, that energy will be transferred to the spring..
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
Replies
17
Views
2K
Replies
3
Views
1K
Replies
8
Views
6K
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K