MHB Solving for Invertible Matrix: What Am I Doing Wrong?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix
Yankel
Messages
390
Reaction score
0
Hello all again,

A is a matrix with order nXn, such that:

\[A^{3}-2A^{2}+I=0\]

I need to choose the correct answer:

1) A is not invertible
2) It is not possible to say if A is invertible
3)
\[(A^{-1})^{2}=2I-A\]
4)
\[A^{-1}=2I-A\]

I can't find the solution here. I tried my own, and got:

\[A^{3}-2A^{2}=-I\]

\[2A^{2}-A^{3}=I\]

\[A(2A-A^{2})=I\]

and therefore:

\[A^{-1}=2A-A^{2}\]

what am I doing wrong here?
 
Physics news on Phys.org
Yankel said:
Hello all again,

A is a matrix with order nXn, such that:

\[A^{3}-2A^{2}+I=0\]

I need to choose the correct answer:

1) A is not invertible
2) It is not possible to say if A is invertible
3)
\[(A^{-1})^{2}=2I-A\]
4)
\[A^{-1}=2I-A\]

I can't find the solution here. I tried my own, and got:

\[A^{3}-2A^{2}=-I\]

\[2A^{2}-A^{3}=I\]

\[A(2A-A^{2})=I\]

and therefore:

\[A^{-1}=2A-A^{2}\]

what am I doing wrong here?

Hi again Yankel! :)

Let's start with invertibility.

If $A$ is not invertible, there must be some $v\ne 0$ such that $Av=0$.
What is $(A^{3}-2A^{2}+I)v$?

Assuming that $A$ is invertible, then you've found that:
$$A^{-1}=2A-A^{2} = A(2I-A)$$
Suppose we multiply on the left with $A^{-1}$?
 
Oh, I see, you multiply on the left and get that A^-1 squared is exactly what I was looking for.

I did not understand the condition for A not being invertible.
 
Indeed.

One of the equivalent definitions of a matrix $A$ being invertible, is (see wiki):
The equation $Ax = 0$ has only the trivial solution $x = 0$.


Let's suppose that $A$ is not invertible.
Then there must be some $v\ne 0$ such that $Av = 0$.
Therefore:
$$(A^{3}-2A^{2}+I)v = A^3v - 2A^2v + Iv = A^2(Av) - 2A(Av) + v= A^20 - 2A 0 + v = v \ne 0$$
This is a contradiction since it's given that $A^{3}-2A^{2}+I = 0$.
Therefore $A$ is invertible.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top