MHB Solving for Invertible Matrix: What Am I Doing Wrong?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix
Yankel
Messages
390
Reaction score
0
Hello all again,

A is a matrix with order nXn, such that:

\[A^{3}-2A^{2}+I=0\]

I need to choose the correct answer:

1) A is not invertible
2) It is not possible to say if A is invertible
3)
\[(A^{-1})^{2}=2I-A\]
4)
\[A^{-1}=2I-A\]

I can't find the solution here. I tried my own, and got:

\[A^{3}-2A^{2}=-I\]

\[2A^{2}-A^{3}=I\]

\[A(2A-A^{2})=I\]

and therefore:

\[A^{-1}=2A-A^{2}\]

what am I doing wrong here?
 
Physics news on Phys.org
Yankel said:
Hello all again,

A is a matrix with order nXn, such that:

\[A^{3}-2A^{2}+I=0\]

I need to choose the correct answer:

1) A is not invertible
2) It is not possible to say if A is invertible
3)
\[(A^{-1})^{2}=2I-A\]
4)
\[A^{-1}=2I-A\]

I can't find the solution here. I tried my own, and got:

\[A^{3}-2A^{2}=-I\]

\[2A^{2}-A^{3}=I\]

\[A(2A-A^{2})=I\]

and therefore:

\[A^{-1}=2A-A^{2}\]

what am I doing wrong here?

Hi again Yankel! :)

Let's start with invertibility.

If $A$ is not invertible, there must be some $v\ne 0$ such that $Av=0$.
What is $(A^{3}-2A^{2}+I)v$?

Assuming that $A$ is invertible, then you've found that:
$$A^{-1}=2A-A^{2} = A(2I-A)$$
Suppose we multiply on the left with $A^{-1}$?
 
Oh, I see, you multiply on the left and get that A^-1 squared is exactly what I was looking for.

I did not understand the condition for A not being invertible.
 
Indeed.

One of the equivalent definitions of a matrix $A$ being invertible, is (see wiki):
The equation $Ax = 0$ has only the trivial solution $x = 0$.


Let's suppose that $A$ is not invertible.
Then there must be some $v\ne 0$ such that $Av = 0$.
Therefore:
$$(A^{3}-2A^{2}+I)v = A^3v - 2A^2v + Iv = A^2(Av) - 2A(Av) + v= A^20 - 2A 0 + v = v \ne 0$$
This is a contradiction since it's given that $A^{3}-2A^{2}+I = 0$.
Therefore $A$ is invertible.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
21
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K