Solving for the t in the Integral of 1/sqrt(9+t^2) dt

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral of the function \( \frac{1}{\sqrt{9+t^2}} \) over the interval from 0 to 4. Participants explore different methods of integration, including substitution techniques and the use of inverse hyperbolic functions, while addressing discrepancies between textbook answers and calculator outputs.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants note that the integral evaluates to \( \ln(3) \) according to certain calculators, while a textbook claims the result is 2.
  • One participant attempts a substitution \( u=\sqrt{9+t^2} \) but questions the origin of the \( t \) in the resulting expression \( \ln(\sqrt{9+t^2}+t) \).
  • Another participant suggests using the substitution \( t=3\sinh(x) \) to transform the integral into \( \operatorname{arcsinh} \left( \frac{4}{3} \right) \), which they argue is equal to \( \ln(3) \).
  • A later reply provides a detailed derivation of the indefinite integral, explaining the presence of \( t \) in the logarithmic expression and relating it to the product of conjugates.
  • Participants express appreciation for the complexity and depth of the mathematical reasoning presented in the discussion.

Areas of Agreement / Disagreement

There is no consensus on the correct evaluation of the integral, as participants present multiple competing views and methods without resolving the discrepancies between the textbook and calculator results.

Contextual Notes

Some participants' approaches rely on specific substitutions and transformations that may not be universally applicable, and the discussion includes various assumptions about the behavior of the functions involved.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int_{0}^{4}\frac{1}{\sqrt{9+t^2}} \,dt$

The book said the and was 2 but the TI said it was $\ln\left({3}\right)$

I tried using $$u=\sqrt{9+t^2}$$ but for$$\int_{}^{}\frac{1}{\sqrt{9+t^2}} \,dt$$
I got $\ln\left({\sqrt{9+t^2}}+t\right)$
Where does the $t$ come from
 
Last edited:
Physics news on Phys.org
According to W|A, this definite integral is:

$$\arsinh\left(\frac{4}{3}\right)=\ln(3)$$
 
Sorry I posted before finishing
But on the indefinite integral where does the $t$ come from?
 
Use the relation $$\cosh^2(x) - \sinh^2(x) = 1$$ by using the substitution $t=3\sinh(x)$. You obtain $dt = 3 \cosh(x) \, dx$ and therefore $$\int_0^4 \frac{1}{\sqrt{9+t^2}} \, dt = \int_0^{\sinh^{-1} (4/3)} \, dx = \operatorname{arcsinh} \left( \frac{4}{3} \right).$$ To see this is equal to $\ln(3)$, let $$\operatorname{arcsinh} \left( \frac{4}{3} \right) = \theta.$$ Then $$\sinh(\theta) = \frac{e^{\theta} - e^{-\theta}}{2} = \frac{4}{3}.$$ Multiply it by $e^{\theta}$ and simplify. You'll get $$e^{2 \theta} - \frac{8}{3} e^{\theta} -1=0.$$ Finding the root of this second degree polynomial you'll find $e^{\theta} = 3$, therefore $\theta = \ln(3)$.
 
karush said:
$\int_{0}^{4}\frac{1}{\sqrt{9+t^2}} \,dt$

The book said the and was 2 but the TI said it was $\ln\left({3}\right)$

I tried using $$u=\sqrt{9+t^2}$$ but for$$\int_{}^{}\frac{1}{\sqrt{9+t^2}} \,dt$$
I got $\ln\left({\sqrt{9+t^2}}+t\right)$
Where does the $t$ come from

$\displaystyle \begin{align*} \int{ \frac{1}{\sqrt{9 + x^2}}\,\mathrm{d}x} &= \int{ \frac{1}{\sqrt{9 + \left[ 3\tan{(t)} \right] ^2}}\,3\sec^2{(t)}\,\mathrm{d}t} \textrm{ after substituting } x = 3\tan{(t)} \implies \mathrm{d}x = 3\sec^2{(t)}\,\mathrm{d}t \\ &= \int{ \frac{3\sec^2{(t)}}{\sqrt{9 + 9\tan^2{(t)}}}\,\mathrm{d}t} \\ &= \int{ \frac{3\sec^2{(t)}}{\sqrt{9\sec^2{(t)}}} \,\mathrm{d}t} \\ &= \int{ \frac{3\sec^2{(t)}}{3\sec{(t)}}\,\mathrm{d}t } \\ &= \int{\sec{(t)}\,\mathrm{d}t} \\ &= \int{ \frac{1}{\cos{(t)}}\,\mathrm{d}t} \\ &= \int{\frac{\cos{(t)}}{\cos^2{(t)}}\,\mathrm{d}t} \\ &= \int{ \frac{\cos{(t)}}{1 - \sin^2{(t)}}\,\mathrm{d}t} \\ &= \int{ \frac{1}{1 - u^2}\,\mathrm{d}u} \textrm{ after substituting } u = \sin{(t)} \implies \mathrm{d}u =\cos{(t)}\,\mathrm{d}t \\ &= \int{ \frac{1}{\left( 1 - u \right) \left( 1 + u \right) }\,\mathrm{d}u} \\ &= \int{ \frac{1}{2 \left( u + 1 \right) } - \frac{1}{2\left( u - 1 \right) } \,\mathrm{d}u} \\ &= \frac{1}{2} \ln{ \left| u + 1 \right| } - \frac{1}{2} \ln{ \left| u - 1 \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{ u + 1}{u - 1} \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{\sin{(t)} + 1}{\sin{(t)} - 1} \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{\left[ \sin{(t)} + 1 \right] ^2}{ \left[ \sin{(t)} - 1 \right] \left[ \sin{(t)} + 1 \right] } \right| } + C \\ &= \frac{1}{2}\ln{ \left| \frac{\sin^2{(t)} + 2\sin{(t)}\cos{(t)} + 1}{\sin^2{(t)} - 1} \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{\sin^2{(t)} + 2\sin{(t)}\cos{(t)} + 1}{-\cos^2{(t)}} \right| } + C \\ &= \frac{1}{2} \ln{ \left| -\tan^2{(t)} - 2\tan{(t)} - \sec^2{(t)} \right| } + C \\ &= \frac{1}{2} \ln{ \left| -\tan^2{(t)} - 2\tan{(t)} - \left[ 1 + \tan^2{(t)} \right] \right| } +C \\ &= \frac{1}{2}\ln{ \left| -2\tan^2{(t)} - 2\tan{(t)} - 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| 2\tan^2{(t)} + 2\tan{(t)} + 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| 2 \left( \frac{x}{3} \right) ^2 + 2 \left( \frac{x}{3} \right) + 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| \frac{2x^2}{9} + \frac{2x}{3} + 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| \frac{2x^2 + 6x + 9}{9} \right| } +C \\ &= \ln{ \left| \frac{\sqrt{2x^2 + 6x + 9}}{3} \right| } + C \end{align*}$

PHEW!
 
Wow. That is truly worthy of the name tour-de-force!
 
karush said:
$\int_{0}^{4}\frac{1}{\sqrt{9+t^2}} \,dt$

The book said the and was 2 but the TI said it was $\ln\left({3}\right)$

I tried using $$u=\sqrt{9+t^2}$$ but for$$\int_{}^{}\frac{1}{\sqrt{9+t^2}} \,dt$$
I got $\ln\left({\sqrt{9+t^2}}+t\right)$
Where does the $t$ come from

Hi karush,

A main reason that $t$ is present is because $9$ is the product of the conjugates $\sqrt{9 + t^2} + t$ and $\sqrt{9 + t^2} - t$. Let me explain more.

Since $(\sqrt{9 + t^2} + t)(\sqrt{9 + t^2} - t) = (9 + t^2) - t^2 = 9$, $$\int \frac{dt}{\sqrt{9 + t^2}}$$

$$= \frac{1}{9} \int \frac{(\sqrt{9 + t^2} + t)(\sqrt{9 + t^2} - t)}{\sqrt{9 + t^2}} \, dt$$

$$=\frac{1}{9} \int \left(1 + \frac{t}{\sqrt{9 + t^2}}\right) (\sqrt{9 + t^2} - t)\, dt$$

$$= \int \left(1 + \frac{t}{\sqrt{9 + t^2}}\right) \frac{1}{\sqrt{9 + t^2} + t}\, dt$$

Now let $u = t + \sqrt{9 + t^2}$. Then $du = (1 + t/\sqrt{9 + t^2})\, dt$. So the last integral becomes $\int \frac{du}{u} = \ln|u| + C = \ln|t + \sqrt{9 + t^2}| + C$. Thus

$$\int \frac{1}{\sqrt{9 + t^2}}\, dt = \ln|t + \sqrt{9 + t^2}| + C.$$

Using this method, you may deduce more generally

$$\int \frac{1}{\sqrt{\lambda + t^2}}\, dt = \ln|t + \sqrt{\lambda + t^2}| + C.$$
 
Wow, that was a LOT of help
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K