Solving for the t in the Integral of 1/sqrt(9+t^2) dt

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral of the function $\frac{1}{\sqrt{9+t^2}}$ from 0 to 4 evaluates to $\ln(3)$, as confirmed by multiple sources including Wolfram Alpha. The confusion arises from the presence of the variable $t$ in the indefinite integral, which can be resolved using the substitution $t = 3\sinh(x)$. This leads to the relationship $\int \frac{1}{\sqrt{9+t^2}} \, dt = \ln|t + \sqrt{9+t^2}| + C$, establishing a clear connection between the integral and its logarithmic result.

PREREQUISITES
  • Understanding of integral calculus, specifically techniques for evaluating definite and indefinite integrals.
  • Familiarity with hyperbolic functions, particularly $\sinh(x)$ and $\cosh(x)$.
  • Knowledge of substitution methods in integration, including trigonometric and hyperbolic substitutions.
  • Proficiency in logarithmic identities and properties.
NEXT STEPS
  • Study the method of integration by substitution, focusing on hyperbolic functions.
  • Learn about the properties of the arcsinh function and its applications in calculus.
  • Explore the derivation and applications of the formula $\int \frac{1}{\sqrt{\lambda + t^2}} \, dt = \ln|t + \sqrt{\lambda + t^2}| + C$.
  • Investigate the relationship between definite integrals and their corresponding logarithmic expressions.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to clarify integral evaluation techniques involving hyperbolic functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int_{0}^{4}\frac{1}{\sqrt{9+t^2}} \,dt$

The book said the and was 2 but the TI said it was $\ln\left({3}\right)$

I tried using $$u=\sqrt{9+t^2}$$ but for$$\int_{}^{}\frac{1}{\sqrt{9+t^2}} \,dt$$
I got $\ln\left({\sqrt{9+t^2}}+t\right)$
Where does the $t$ come from
 
Last edited:
Physics news on Phys.org
According to W|A, this definite integral is:

$$\arsinh\left(\frac{4}{3}\right)=\ln(3)$$
 
Sorry I posted before finishing
But on the indefinite integral where does the $t$ come from?
 
Use the relation $$\cosh^2(x) - \sinh^2(x) = 1$$ by using the substitution $t=3\sinh(x)$. You obtain $dt = 3 \cosh(x) \, dx$ and therefore $$\int_0^4 \frac{1}{\sqrt{9+t^2}} \, dt = \int_0^{\sinh^{-1} (4/3)} \, dx = \operatorname{arcsinh} \left( \frac{4}{3} \right).$$ To see this is equal to $\ln(3)$, let $$\operatorname{arcsinh} \left( \frac{4}{3} \right) = \theta.$$ Then $$\sinh(\theta) = \frac{e^{\theta} - e^{-\theta}}{2} = \frac{4}{3}.$$ Multiply it by $e^{\theta}$ and simplify. You'll get $$e^{2 \theta} - \frac{8}{3} e^{\theta} -1=0.$$ Finding the root of this second degree polynomial you'll find $e^{\theta} = 3$, therefore $\theta = \ln(3)$.
 
karush said:
$\int_{0}^{4}\frac{1}{\sqrt{9+t^2}} \,dt$

The book said the and was 2 but the TI said it was $\ln\left({3}\right)$

I tried using $$u=\sqrt{9+t^2}$$ but for$$\int_{}^{}\frac{1}{\sqrt{9+t^2}} \,dt$$
I got $\ln\left({\sqrt{9+t^2}}+t\right)$
Where does the $t$ come from

$\displaystyle \begin{align*} \int{ \frac{1}{\sqrt{9 + x^2}}\,\mathrm{d}x} &= \int{ \frac{1}{\sqrt{9 + \left[ 3\tan{(t)} \right] ^2}}\,3\sec^2{(t)}\,\mathrm{d}t} \textrm{ after substituting } x = 3\tan{(t)} \implies \mathrm{d}x = 3\sec^2{(t)}\,\mathrm{d}t \\ &= \int{ \frac{3\sec^2{(t)}}{\sqrt{9 + 9\tan^2{(t)}}}\,\mathrm{d}t} \\ &= \int{ \frac{3\sec^2{(t)}}{\sqrt{9\sec^2{(t)}}} \,\mathrm{d}t} \\ &= \int{ \frac{3\sec^2{(t)}}{3\sec{(t)}}\,\mathrm{d}t } \\ &= \int{\sec{(t)}\,\mathrm{d}t} \\ &= \int{ \frac{1}{\cos{(t)}}\,\mathrm{d}t} \\ &= \int{\frac{\cos{(t)}}{\cos^2{(t)}}\,\mathrm{d}t} \\ &= \int{ \frac{\cos{(t)}}{1 - \sin^2{(t)}}\,\mathrm{d}t} \\ &= \int{ \frac{1}{1 - u^2}\,\mathrm{d}u} \textrm{ after substituting } u = \sin{(t)} \implies \mathrm{d}u =\cos{(t)}\,\mathrm{d}t \\ &= \int{ \frac{1}{\left( 1 - u \right) \left( 1 + u \right) }\,\mathrm{d}u} \\ &= \int{ \frac{1}{2 \left( u + 1 \right) } - \frac{1}{2\left( u - 1 \right) } \,\mathrm{d}u} \\ &= \frac{1}{2} \ln{ \left| u + 1 \right| } - \frac{1}{2} \ln{ \left| u - 1 \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{ u + 1}{u - 1} \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{\sin{(t)} + 1}{\sin{(t)} - 1} \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{\left[ \sin{(t)} + 1 \right] ^2}{ \left[ \sin{(t)} - 1 \right] \left[ \sin{(t)} + 1 \right] } \right| } + C \\ &= \frac{1}{2}\ln{ \left| \frac{\sin^2{(t)} + 2\sin{(t)}\cos{(t)} + 1}{\sin^2{(t)} - 1} \right| } + C \\ &= \frac{1}{2} \ln{ \left| \frac{\sin^2{(t)} + 2\sin{(t)}\cos{(t)} + 1}{-\cos^2{(t)}} \right| } + C \\ &= \frac{1}{2} \ln{ \left| -\tan^2{(t)} - 2\tan{(t)} - \sec^2{(t)} \right| } + C \\ &= \frac{1}{2} \ln{ \left| -\tan^2{(t)} - 2\tan{(t)} - \left[ 1 + \tan^2{(t)} \right] \right| } +C \\ &= \frac{1}{2}\ln{ \left| -2\tan^2{(t)} - 2\tan{(t)} - 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| 2\tan^2{(t)} + 2\tan{(t)} + 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| 2 \left( \frac{x}{3} \right) ^2 + 2 \left( \frac{x}{3} \right) + 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| \frac{2x^2}{9} + \frac{2x}{3} + 1 \right| } +C \\ &= \frac{1}{2} \ln{ \left| \frac{2x^2 + 6x + 9}{9} \right| } +C \\ &= \ln{ \left| \frac{\sqrt{2x^2 + 6x + 9}}{3} \right| } + C \end{align*}$

PHEW!
 
Wow. That is truly worthy of the name tour-de-force!
 
karush said:
$\int_{0}^{4}\frac{1}{\sqrt{9+t^2}} \,dt$

The book said the and was 2 but the TI said it was $\ln\left({3}\right)$

I tried using $$u=\sqrt{9+t^2}$$ but for$$\int_{}^{}\frac{1}{\sqrt{9+t^2}} \,dt$$
I got $\ln\left({\sqrt{9+t^2}}+t\right)$
Where does the $t$ come from

Hi karush,

A main reason that $t$ is present is because $9$ is the product of the conjugates $\sqrt{9 + t^2} + t$ and $\sqrt{9 + t^2} - t$. Let me explain more.

Since $(\sqrt{9 + t^2} + t)(\sqrt{9 + t^2} - t) = (9 + t^2) - t^2 = 9$, $$\int \frac{dt}{\sqrt{9 + t^2}}$$

$$= \frac{1}{9} \int \frac{(\sqrt{9 + t^2} + t)(\sqrt{9 + t^2} - t)}{\sqrt{9 + t^2}} \, dt$$

$$=\frac{1}{9} \int \left(1 + \frac{t}{\sqrt{9 + t^2}}\right) (\sqrt{9 + t^2} - t)\, dt$$

$$= \int \left(1 + \frac{t}{\sqrt{9 + t^2}}\right) \frac{1}{\sqrt{9 + t^2} + t}\, dt$$

Now let $u = t + \sqrt{9 + t^2}$. Then $du = (1 + t/\sqrt{9 + t^2})\, dt$. So the last integral becomes $\int \frac{du}{u} = \ln|u| + C = \ln|t + \sqrt{9 + t^2}| + C$. Thus

$$\int \frac{1}{\sqrt{9 + t^2}}\, dt = \ln|t + \sqrt{9 + t^2}| + C.$$

Using this method, you may deduce more generally

$$\int \frac{1}{\sqrt{\lambda + t^2}}\, dt = \ln|t + \sqrt{\lambda + t^2}| + C.$$
 
Wow, that was a LOT of help
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K