Solving for Unknowns in Conservation of Energy and Momentum Equations

  • Thread starter Thread starter middlephysics
  • Start date Start date
  • Tags Tags
    Unknowns
Click For Summary
The discussion revolves around deriving the equation E'/E = [(A-1)/(A+1)]² from conservation of energy and momentum principles. Participants detail their attempts to manipulate the equations, starting with mv = mv' + AmV and expressing it in terms of v' and V. They successfully isolate V² and substitute it back into the energy equation, leading to a simplified expression. Ultimately, one participant confirms they have solved the problem. The conversation highlights the process of using algebraic manipulation to connect energy and momentum conservation in physics.
middlephysics
Messages
21
Reaction score
0

Homework Statement



Could someone help me get from these two equations to E'/E=[(A-1)/(A+1)]2

http://postimg.org/image/m5zi9ha19/

Homework Equations



E = v^2=E' = v'2 + AV^2
p=v=p' = v' + AV = v


from conservation of energy, momentum

E'/E= (v'2 + AV^2)/(v^2)

The Attempt at a Solution



Three or four pages in my binder with no progress.
 
Physics news on Phys.org
$$mv = mv' + AmV$$ can be written as $$mv - mv'= AmV$$ and this gives $$(mv - mv')^2= (Am)^2 V^2$$
You can use this in the equation for the conservation of energy and get rid of V, so just v' and v' are left as unknown, and their ratio is related to E'/E.
 
mfb said:
$$mv = mv' + AmV$$ can be written as $$mv - mv'= AmV$$ and this gives $$(mv - mv')^2= (Am)^2 V^2$$
You can use this in the equation for the conservation of energy and get rid of V, so just v' and v' are left as unknown, and their ratio is related to E'/E.

Ok from what you wrote I've solved for $$V^2=(mv-mv')^2/(Am)^2$$.

Now I then plugged that V^2 into my $$E'/E= (v'2 + AV^2)/(v^2)$$

I am left with something like

$$(v'(A-1)+v^2-2vv')/(Av^2)$$

so far so good?
 
mfb said:
$$mv = mv' + AmV$$ can be written as $$mv - mv'= AmV$$ and this gives $$(mv - mv')^2= (Am)^2 V^2$$
You can use this in the equation for the conservation of energy and get rid of V, so just v' and v' are left as unknown, and their ratio is related to E'/E.

I've figured it out, thank you
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
903
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K