[sp]Let $f(s) = \dfrac1{x-s},$ and define a sequence of functions $f^{(n)}$ inductively by $f^{(n+1)}(s) = f\bigl(f^{(n)}(s)\bigr),$ with $f^{(1)}(s) = f(s).$ Then $\dfrac1{f(s)} = x-s,$ so that $s + \dfrac1{f(s)} = x.$ Thus if $s=a$ then $f(s) = b$, $f^{(2)}(s) = c$, $f^{(3)}(s) = d$ and $f^{(4)}(s) = a = s.$ So we are looking for points of order $4$ for $f$ (that is to say, fixed points for the function $f^{(4)}$).
Start with $f^{(2)}(s) = f\bigl(f(s)\bigr) = \dfrac1{x-\frac1{x-s}} = \dfrac{x-s}{x^2-1-sx}.$ Then $$f^{(4)}(s) = f^{(2)}\bigl(f^{(2)}(s)\bigr) = \frac{x - \frac{x-s}{x^2-1-sx}}{x^2-1 - \frac{x(x-s)}{x^2-1-sx}} = \frac{x^3 - sx^2 - 2x + s}{x^4 - sx^3 - 3x^2 + 2xs + 1}.$$ The condition $f^{(4)}(s) = s$ becomes $x^3 - sx^2 - 2x + s = s(x^4 - sx^3 - 3x^2 + 2xs + 1),$ which simplifies to $x(2-x^2)(s^2 - sx + 1) = 0.$
If $x=0$ then $f(s) = -\dfrac1s$, and $f^{(2)}(s) = s$, so that every point has order $2$. If $s^2 - sx + 1 = 0$ then $s = \dfrac1{x-s}$, so that $s$ is a fixed point of $f$, which is not what we want. So the only possibility to find points of order $4$ is if $2-x^2 = 0$, in other words $x = \pm\sqrt2$.
The question asks for all the numbers $a,b,c,d$ to be positive, so we must take $x=\sqrt2.$ The function $f(s) = \dfrac1{\sqrt2-s}$ satisfies $f^{(4)}(s) = s$ for all $s$. It also has the property $f(s) > s$ whenever $s<\sqrt2$; and $f(s)<0$ whenever $s>\sqrt2$. That means that it is never possible to choose all four numbers $a,b,c,d$ to be positive. So long as you allow them to take negative values, you can choose $a$ to be any real number except $\sqrt2$. Then the numbers $a$, $b = f(a)$, $c = f(b) = f^{(2)}(a)$ and $d = f( c) = f^{(3)}(a)$ will be distinct, and will satisfy the given conditions. But you can't have all four of them positive.[/sp]