MHB Solving Friction Problem: Mass 5kg Trolley, 25° Slope, Coefficient 0.4

Shah 72
MHB
Messages
274
Reaction score
0
A trolley of mass 5 kg is rolling up a rough slope, which is at an angle of 25 degree to the horizontal. The coefficient of friction between the trolley and the slope is 0.4. It passes a point A with speed 12m/s. Find its speed when it passes A on its way back down the slope.
So I did F=m×a
-0.4×50cos25- 50sin25= 5a
a=-7.85m/s^2.
I don't know how to calculate after this. Pls help
 
Mathematics news on Phys.org
let uphill be positive …

initial velocity > 0, acceleration < 0

$a = -g(\sin{\theta} + \mu\cos{\theta})$

$\Delta x = \dfrac{0^2-12^2}{2a} = 9.17 \, m$let downhill be positive …

initial velocity = 0, final velocity > 0, acceleration > 0, delta x > 0

$a = g(\sin{\theta} - \mu \cos{\theta})$

$v_f = \sqrt{ 0^2 + 2a \Delta x}$
 
skeeter said:
let uphill be positive …

initial velocity > 0, acceleration < 0

$a = -g(\sin{\theta} + \mu\cos{\theta})$

$\Delta x = \dfrac{0^2-12^2}{2a} = 9.17 \, m$let downhill be positive …

initial velocity = 0, final velocity > 0, acceleration > 0, delta x > 0

$a = g(\sin{\theta} - \mu \cos{\theta})$

$v_f = \sqrt{ 0^2 + 2a \Delta x}$
Thank you so much!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top