MHB Solving Friction Problem: Mass 5kg Trolley, 25° Slope, Coefficient 0.4

Click For Summary
A 5 kg trolley is rolling up a 25° slope with a coefficient of friction of 0.4, initially at 12 m/s. The acceleration while moving uphill is calculated as -7.85 m/s² due to the opposing forces of gravity and friction. To find the speed on the return down the slope, the distance traveled uphill is determined to be 9.17 m. The acceleration during the descent is positive, calculated using the same forces but with the direction reversed. The final speed as the trolley passes point A on its way back down can be derived from these values.
Shah 72
MHB
Messages
274
Reaction score
0
A trolley of mass 5 kg is rolling up a rough slope, which is at an angle of 25 degree to the horizontal. The coefficient of friction between the trolley and the slope is 0.4. It passes a point A with speed 12m/s. Find its speed when it passes A on its way back down the slope.
So I did F=m×a
-0.4×50cos25- 50sin25= 5a
a=-7.85m/s^2.
I don't know how to calculate after this. Pls help
 
Mathematics news on Phys.org
let uphill be positive …

initial velocity > 0, acceleration < 0

$a = -g(\sin{\theta} + \mu\cos{\theta})$

$\Delta x = \dfrac{0^2-12^2}{2a} = 9.17 \, m$let downhill be positive …

initial velocity = 0, final velocity > 0, acceleration > 0, delta x > 0

$a = g(\sin{\theta} - \mu \cos{\theta})$

$v_f = \sqrt{ 0^2 + 2a \Delta x}$
 
skeeter said:
let uphill be positive …

initial velocity > 0, acceleration < 0

$a = -g(\sin{\theta} + \mu\cos{\theta})$

$\Delta x = \dfrac{0^2-12^2}{2a} = 9.17 \, m$let downhill be positive …

initial velocity = 0, final velocity > 0, acceleration > 0, delta x > 0

$a = g(\sin{\theta} - \mu \cos{\theta})$

$v_f = \sqrt{ 0^2 + 2a \Delta x}$
Thank you so much!
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K