MHB Solving Functions Problems: Lagrange and Rolle's Theorem

  • Thread starter Thread starter laura1231
  • Start date Start date
  • Tags Tags
    Functions
AI Thread Summary
The discussion revolves around a problem involving two differentiable functions, f and g, that share the same values at two points. The author of the problem suggests that statement b is correct, indicating that there exist points c1 and c2 where the derivatives of f and g are equal. However, another participant argues that by applying Rolle's Theorem to the function h(x) = f(x) - g(x), it can be shown that there exists a point c where the derivatives of f and g are equal, supporting statement a as the correct answer. Ultimately, it is concluded that both statements can be true under the given conditions. The conversation highlights the application of Lagrange's and Rolle's Theorems in determining the relationships between the derivatives of the functions.
laura1231
Messages
28
Reaction score
0
Hi, in a book I have found this problem:
"Let be $f,g:\mathbb{R}\rightarrow\mathbb{R}$ two derivable functions such that $f(0)=g(0)$ and $f(6)=g(6)$. Which of the following statements is necessarily true?:
a) $\exists\ c\in]0;6[ : f'(c)=g'(c)$;
b) $\exists\ c_1,c_2\in]0;6[ : f'(c_1)=g'(c_2)$.
"
The author of this question indicates the answer b because, for Lagrange's theorem $\exists\ c_1\in ]0;6[ : f'(c_1)=\dfrac{f(6)-f(0)}{6-0}$ and $\exists\ c_2\in ]0;6[ : g'(c_2)=\dfrac{g(6)-g(0)}{6-0}$, therefore $f'(c_1)=g'(c_2)$ but you can't be sure that $c_1=c_2$...
I think the author misses in fact if you call $h(x)=f(x)-g(x)$ then, the hypothesis of Rolle's theorem are true ($h(0)=h(6)$) therefore $\exists\ c \in ]0;6[: h'(c)=0$ then $f'(c)=g'(c)$. For me the correct answer is a.
Am I right?
 
Mathematics news on Phys.org
laura123 said:
Hi, in a book I have found this problem:
"Let be $f,g:\mathbb{R}\rightarrow\mathbb{R}$ two derivable functions such that $f(0)=g(0)$ and $f(6)=g(6)$. Which of the following statements is necessarily true?:
a) $\exists\ c\in]0;6[ : f'(c)=g'(c)$;
b) $\exists\ c_1,c_2\in]0;6[ : f'(c_1)=g'(c_2)$.
"
The author of this question indicates the answer b because, for Lagrange's theorem $\exists\ c_1\in ]0;6[ : f'(c_1)=\dfrac{f(6)-f(0)}{6-0}$ and $\exists\ c_2\in ]0;6[ : g'(c_2)=\dfrac{g(6)-g(0)}{6-0}$, therefore $f'(c_1)=g'(c_2)$ but you can't be sure that $c_1=c_2$...
I think the author misses in fact if you call $h(x)=f(x)-g(x)$ then, the hypothesis of Rolle's theorem are true ($h(0)=h(6)$) therefore $\exists\ c \in ]0;6[: h'(c)=0$ then $f'(c)=g'(c)$. For me the correct answer is a.
Am I right?

Hi laura! ;)

Yep. I believe you are right.
Therefore both statements are true.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top