MHB Solving Heat Flow in a Rod: Initial & Boundary Conditions

Click For Summary
The discussion focuses on solving the heat flow in a rod with fixed temperatures at both ends, initially set to \(T_1\) and \(T_2\), which are then interchanged at \(t = 0\). The initial and boundary conditions are established, leading to a separation of variables approach where \(T(x,t) = \varphi(x)\psi(t)\). The resulting equations yield eigenfunctions involving sine and cosine functions, but the participant expresses difficulty with a complicated eigenfunction setup. Clarification is provided that the boundary conditions should be Dirichlet rather than Neumann due to the insulating nature of the rod's sides. The discussion concludes with the participant recalling the correct approach for these types of problems.
Dustinsfl
Messages
2,217
Reaction score
5
The temperatures at ends \(x = 0\) and \(x = \ell\) of a rod length \(\ell\) with insulating sides held at temperatures \(T_1\) and \(T_2\) until steady-state conditions prevail. Then, at the instant \(t = 0\), the temperatures of the two ends are
interchanged. Find the resultant temperature distibution as function of \(x\) and \(t\).

So the initial condition and boundary conditions are
\begin{align}
T(x,0) &= \frac{x}{\ell}(T_1 - T_2) + T_2\\
T_x(0,t) &= T_1\\
T_x(\ell,t) &= T_2
\end{align}
Let \(T(x,t) = \varphi(x)\psi(t)\). Then
\[
\frac{\varphi''}{\varphi} = \frac{1}{\alpha^2}\frac{\dot{\psi}}{\psi} = -k^2.
\]
Thus, \(\varphi(x)\sim\left\{\cos(kx), \sin(kx)\right\}\) and \(\psi(t)\sim\exp(-k^2\alpha^2t)\).

With these B.C.s, I get an extremely complicated eigenfunction. Is my setup correct?
If so, what can do about
\begin{alignat}{2}
\varphi_x(0) &= bk && ={} T_1\\
b &= \frac{T_1}{k}\\
\varphi_x(\ell) &= -ka\sin(k\ell) + T_1\cos(k\ell) && {}= T_2
\end{alignat}
If my setup is correct, how do I continue?
 
Last edited:
Physics news on Phys.org
Re: heat flow in a rod

dwsmith said:
The temperatures at ends \(x = 0\) and \(x = \ell\) of a rod length \(\ell\) with insulating sides held at temperatures \(T_1\) and \(T_2\) until steady-state conditions prevail. Then, at the instant \(t = 0\), the temperatures of the two ends are
interchanged. Find the resultant temperature distibution as function of \(x\) and \(t\).

So the initial condition and boundary conditions are
\begin{align}
T(x,0) &= \frac{x}{\ell}(T_1 - T_2) + T_2\\
T_x(0,t) &= T_1\\
T_x(\ell,t) &= T_2
\end{align}
Let \(T(x,t) = \varphi(x)\psi(t)\). Then
\[
\frac{\varphi''}{\varphi} = \frac{1}{\alpha^2}\frac{\dot{\psi}}{\psi} = -k^2.
\]
Thus, \(\varphi(x)\sim\left\{\cos(kx), \sin(kx)\right\}\) and \(\psi(t)\sim\exp(-k^2\alpha^2t)\).

With these B.C.s, I get an extremely complicated eigenfunction. Is my setup correct?
If so, what can do about
\begin{alignat}{2}
\varphi_x(0) &= bk && ={} T_1\\
b &= \frac{T_1}{k}\\
\varphi_x(\ell) &= -ka\sin(k\ell) + T_1\cos(k\ell) && {}= T_2
\end{alignat}
If my setup is correct, how do I continue?

I now remember what to do for these type of problems.

I also found out that the insulated portion is supposed to be about the lateral surface; that is, the BC should be Dirichlet not Neumann.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K