MHB Solving Inequality Problem: Proving Radical Expressions with Cube Roots

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion revolves around proving the inequality involving cube roots and radical expressions. The main inequality to prove is that the expression involving cube roots of 1, 12 times the cube root of 65 squared, and 48 times the cube root of 65 is greater than another expression involving the cube root of 63 and constants. Participants share their approaches and solutions, with kaliprasad receiving commendation for their work. The conversation emphasizes the complexity of manipulating cube roots and radical expressions in inequalities. The thread highlights the importance of rigorous proof techniques in solving such mathematical problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sqrt[3]{1−12\sqrt[3]{65^2} + 48\sqrt[3]{65}} -\sqrt[3]{63}\gt \sqrt[3]{1−48\sqrt[3]{63} + 36\sqrt[3]{147}} -4 $
 
Mathematics news on Phys.org
anemone said:
Prove $\sqrt[3]{1−12\sqrt[3]{65^2} + 48\sqrt[3]{65}} -\sqrt[3]{63}\gt \sqrt[3]{1−48\sqrt[3]{63} + 36\sqrt[3]{147}} -4 $

first let us simplify LHS
$\sqrt[3]{1−12\sqrt[3]{65^2} + 48\sqrt[3]{65}}$
this appears to be a cube whose cube root is of the form
$a\sqrt[3]{65}-b$
cube it to get
$65a^3 - 3a^2\sqrt[3]{65^2}b+3ab^2\sqrt[3]{65}-b^3 = 1−12\sqrt[3]{65^2} + 48\sqrt[3]{65}$
compare both sides to get
$3a^2b= 12$
$3ab^2 = 48$
giving a = 1 and b= 4
but we need to check the rational part
65* 1^3 - 4^3 = 1 so it is correct and hence

LHS becomes

$\sqrt[3]{1−12\sqrt[3]{65^2} + 48\sqrt[3]{65}}- \sqrt[3]{63} = \sqrt[3]{65}-4 - \sqrt[3]{63}\cdots(1)$

similarly trying the RHS with $a\sqrt[3]{7}-b\sqrt[3]{3}$ and failing and the trying with $a- \sqrt[3]{63}$
we get the RHS as
$\sqrt[3]{1−48\sqrt[3]{63} + 36\sqrt[3]{147}} -4=4- \sqrt[3]{63}- 4\cdots(2)$

hence from (1) and(2) we get the result
 
Last edited:
Well done kaliprasad.

My solution:
Rewrite the inequality as $∛(1−12∛65² + 48∛65)+4\gt ∛(1−48∛63 + 36∛147)+∛63$.

If we can prove LHS is greater than $4$ and RHS equals $4$, then we are done.

First, note that $1−12∛65² + 48∛65=∛65³-3(∛65)(∛64)(∛65-∛64)-∛64³=(∛65-∛64)^3>0$, so it must be true that $LHS=∛(1−12∛65² + 48∛65)+4>4$.

Next, note that $∛(1−48∛63 + 36∛147)=∛(∛64³-3(∛64)(∛63)(∛64-∛63)-∛63³)=∛(∛64-∛63)³=∛64-∛63=4-∛63$, that suggests $RHS=∛(1−48∛63 + 36∛147) + ∛63=4$, this completes the proof.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
17
Views
4K