freezer
- 75
- 0
Homework Statement
Solve the initial value problem:
<br /> x^{2}{y}'' + x{y}' + y = 0, x>0, y(1)=1, {y}'=2<br />
Homework Equations
y=x^m
The Attempt at a Solution
<br /> x^{2}(m(m-1)x^{m-2})+xmx^{m-1} + x^{m}<br />
<br /> x^{2}(m(m-1)x^{m-2})+xmx^{m-1} + x^{m}<br />
<br /> x^{m}(m(m-1) + m + 1)<br />
<br /> m = \pm i<br />
This is the way i was doing it:
<br /> C_1 e^{it} + C_2 e^{-it}<br />
<br /> C_1(cos(t) + i sin(t)) + C_2(cos(t) - i sin(t))<br />
The solution shows:
<br /> C_1 x^{i} + C_2 x^{-i}<br />
<br /> C_1(cos(ln(x)) + i sin(ln(x))) + C_2(cos(ln(x)) - i sin(ln(x)))<br />
With the initial conditions indicate that the solution is correct. Yet the textbook shows the form to be:
<br /> <br /> Y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}<br /> <br />
not
<br /> <br /> Y(x) = C_1 x^{r_1} + C_2 x^{r_2}<br />
And if the second form is correct, I have not found an Euler identity that supports the step.