Solving Klein Gordon’s equation

In summary, solving Klein-Gordon's equation involves finding solutions to a relativistic wave equation that describes scalar fields in quantum field theory. The equation incorporates mass and is used to model various physical phenomena, including particle creation and annihilation. Solutions typically involve techniques from mathematical physics, including Fourier transforms and separation of variables, leading to a spectrum of plane wave solutions that reflect the underlying symmetries and conservation laws of the system. Applications range from quantum mechanics to cosmology, illustrating the equation's significance in modern theoretical physics.
  • #1
Safinaz
261
8
Homework Statement
I try to solve Klein Gordon’s equation for specific boundary and initial conditions
Relevant Equations
The Klein Gordon’s equation for a masses scalar is given by :
## \left( \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} \right) \phi (x, t) = 0 ##………(1)
My solution:

Let ## \phi (x, t) = F(x) A(t) ##, then Eq. (1) becomes

##
\frac{1}{A(t)} \frac{\partial^2}{\partial t^2} - \frac{1}{F(x)} \frac{\partial^2}{\partial x^2} = 0
##

So that : ## \frac{\partial^2}{\partial t^2} = k^2 ~A (t)##, and ## \frac{\partial^2}{\partial x^2} = k^2 ~F (x)##.

Leads to :
##
\phi(t,x) = ( c_1 e^{kt} + c_2 e^{-kt} ) ( c_3 e^{kx} + c_4 e^{-kx} )
##

Assuming BC and IC :

##
bc={\phi[t,0]==1,(D[\phi[t,x],x]/.x->Pi)==0}
##
##
ic={\phi[0,x]==0,(D[\phi[t,x],t]/.t->0)==1}
##

BC leads to ##c_3 = c_4= 1/2 ## and the IC leads to to ##c_1=- c_2= 1/2 ##.

Ending up by :
##
\phi(t,x) = \frac{1}{4} e^{k(t-x)} - \frac{1}{4} e^{-k(t-x)}……… (2)
##

So any help are these steps correct till Eq. (2) ? And how to determine ##k##?
 
Last edited:
Physics news on Phys.org
  • #2
You just wrote down the scalar wave equation, not the Klein-Gordon equation.
 
Back
Top