Solving Linear Systems (Basic Question)

  • Thread starter Thread starter Atran
  • Start date Start date
  • Tags Tags
    Linear Systems
Click For Summary
A linear system is solved by finding the intersection points of the equations represented graphically. The equations provided, y = x + 5 and b = 2*a, involve different variable pairs and do not form a related system unless they are expressed in compatible forms. The solution sets can be represented as ordered pairs, and the convention is to maintain a consistent order for the variables. The discussion highlights confusion regarding variable relationships and the necessity of maintaining the same order in pairs when equating variables. Clarifying these concepts can simplify understanding how to solve linear systems geometrically.
Atran
Messages
93
Reaction score
1
Hi. I don't understand how a solution to a linear system is obtained (for example geometrically; don't consider the substitution method and elimination), and I am feeling very frustrated.

Say I have the following equations:
y = x + 5
b = 2*a (the relation remains the same even if I change the variables)
Obviously, the solution is (x=a=5 and y=b=10) or (x=b=-5 and y=a=-10).

The first equation has the solution sets, A1={(x, x+5) : x∈R} and A2={(x+5, x) : x∈R}.
The second equation has the solution sets, B1={(x, 2*x) : x∈R} and B2={(2*x, x) : x∈R}

A1 ∩ B1 and A2 ∩ B2 are the solution sets to the system, if x=a and y=b.
A1 ∩ B2 and A2 ∩ B1 are the solution sets to the system, if x=b and y=a.

How can I prove that the variables which are meant to be equal (for example x=a), must be both the first or the second element in given pairs? For example if x=a and I consider A2, then I must consider B2, i.e. if x is the second element of the pairs x and y, then a must also be the second element of pairs a and b.

Am I thinking right? I've been looking at many websites but none really cleared up my confusion.
I'm really thankful if you can explain this clearly.
 
Mathematics news on Phys.org
Atran said:
Hi. I don't understand how a solution to a linear system is obtained (for example geometrically; don't consider the substitution method and elimination), and I am feeling very frustrated.

Say I have the following equations:
y = x + 5
b = 2*a (the relation remains the same even if I change the variables)
Obviously, the solution is (x=a=5 and y=b=10) or (x=b=-5 and y=a=-10).
The two equations involve different pairs of variables, so the two equations aren't related at all. If the second equation happened to be y = 2x, then you would have two lines that intersect. The intersection point would be the solution of the system of equations.
Atran said:
The first equation has the solution sets, A1={(x, x+5) : x∈R} and A2={(x+5, x) : x∈R}.
The second equation has the solution sets, B1={(x, 2*x) : x∈R} and B2={(2*x, x) : x∈R}
By convention we write the ordered pairs as (x, y), in that order. The solution set would be {(x, y) | y = x + 5, x ##\in## R}, and similar for the second equation.
Atran said:
A1 ∩ B1 and A2 ∩ B2 are the solution sets to the system, if x=a and y=b.
A1 ∩ B2 and A2 ∩ B1 are the solution sets to the system, if x=b and y=a.
Why are you doing this? By using a different set of variables (a and b), you are overcomplicating what is a simple problem.
Atran said:
How can I prove that the variables which are meant to be equal (for example x=a), must be both the first or the second element in given pairs? For example if x=a and I consider A2, then I must consider B2, i.e. if x is the second element of the pairs x and y, then a must also be the second element of pairs a and b.
You don't need to prove this, as the variables appear in a certain order by convention. If you write the system as
y = x + 5
y = 2x

then the system is trivial to solve.
Atran said:
Am I thinking right? I've been looking at many websites but none really cleared up my confusion.
I'm really thankful if you can explain this clearly.
 
I don't understand how those two equations form a linear system, or your "solution."
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K