A Solving Linearized EFE for Newtonian Potential Under Lorentz Gauge

Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
Under the Lorentz Gauge the Einstein Field Equations are given as

$$G^{\alpha \beta} = -\frac{1}{2}\square \bar{h}^{\alpha \beta}$$

Then the linearized EFE becomes,

$$\square \bar{h}^{\mu\nu} = -16 \pi T^{\mu\nu}$$

For the later parts, I ll share pictures from the book

1621685421634.png
1621685459266.png
I have couple of questions

1) I did not understand how the ##\square## becomes ##\nabla^2## for this case.

2) I did not understand equation 8.47 at all.

3) I also did not understand 8.49. Since he only defined $$\nabla^2\bar(h)^{0 0} = -16 \pi \rho$$.

Is there also terms like ##\nabla^2\bar(h)^{xx} = -16 \pi \rho##, ##\nabla^2\bar(h)^{yy} = -16 \pi \rho## and ##\nabla^2\bar(h)^{zz} = -16 \pi \rho## ?

This might be helpful for you guys
1621685866975.png


Please help. Thanks

For instance, by using 8.31 and 8.46 I can write,

$$h^{0 0} = -4\phi - \frac{1}{2} (-1) \bar{h}$$ but what is ##\bar{h}## here ?

If we only know (8.45), how can we calculate ##h^{xx}## ?
 

Attachments

  • 1621685438572.png
    1621685438572.png
    28 KB · Views: 142
Physics news on Phys.org
1) The argument is that ##\partial_t## is of order ##v \partial_x##. Since ##v\ll 1##, the ##\partial_t## terms are negligible.

2) This is just computing the trace of ##h##. First step is the definition of the trace. Second step is using that ##\bar h## is the trace-reversed perturbation (take the trace of the definition of ##\bar h_{ab}##). Last step is using that the 00 component is assumed to completely dominate ##\bar h##.

3) No. The entire argumentation is based on the 00 component of the stress energy tensor dominating and all other terms therefore being negligible.
 
  • Like
Likes vanhees71 and Arman777
Orodruin said:
1) The argument is that ##\partial_t## is of order ##v \partial_x##. Since ##v\ll 1##, the ##\partial_t## terms are negligible.

2) This is just computing the trace of ##h##. First step is the definition of the trace. Second step is using that ##\bar h## is the trace-reversed perturbation (take the trace of the definition of ##\bar h_{ab}##). Last step is using that the 00 component is assumed to completely dominate ##\bar h##.

3) No. The entire argumentation is based on the 00 component of the stress energy tensor dominating and all other terms therefore being negligible.
Thanks for your answer.

1) I understand this one

2-3) So you mean ##\bar{h}^{00} \gg \bar{h}^{11}, \bar{h}^{22} , \bar{h}^{33}## ?

If that's the case, then how can we calculate ##h^{xx}, h^{yy}## and ##h^{zz}## ?
 
Okay, solved it. Nvm
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top