Solving Proca Lagrangian w/ Extra Operator: Find Laws of Motion

Click For Summary

Discussion Overview

The discussion revolves around the application of the Euler-Lagrange equation to the Proca Lagrangian with an additional operator. Participants explore the derivation of equations of motion and the implications of index manipulation in tensor calculus, focusing on the mathematical details and potential errors in reasoning.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the Proca Lagrangian and derives the equations of motion using the Euler-Lagrange equation, introducing an additional operator from a referenced paper.
  • Another participant requests clarification on the derivation of a specific term in the Euler-Lagrange equation.
  • Several participants discuss the implications of manipulating indices and the correct application of derivatives in the context of tensor calculus.
  • Confusion arises regarding the computation of derivatives with respect to field variables versus spacetime coordinates, leading to a discussion about the Kronecker delta property.
  • Disagreement emerges over the validity of a specific identity used in the context of the Proca Lagrangian, with references to external sources for support.
  • Participants challenge each other's interpretations and calculations, particularly regarding the arrangement and meaning of indices in tensor expressions.

Areas of Agreement / Disagreement

Participants express differing views on the correctness of certain mathematical identities and their application to the Proca Lagrangian. No consensus is reached on the validity of the index manipulation discussed.

Contextual Notes

Participants note potential confusion stemming from the use of indices in tensor calculus and the implications of the Einstein summation convention. There are unresolved questions regarding the correctness of specific mathematical expressions and their application in deriving equations of motion.

  • #31
Yes, so how you apply this on #28? Btw, there you forgot the ##-\beta##.
 
Physics news on Phys.org
  • #32
i ended up using the property ##g_{\mu\gamma}\delta^\gamma_\alpha=g_{\mu\alpha}## to come up with this solution:
$$\partial^\beta F_{\beta\alpha} + \partial^\beta(A_\mu A^\mu g_{\rho\beta} \delta^\rho_\alpha) + \mu^2 A_\alpha =(\partial_\rho A^\rho) (g_{\mu\alpha} A^\mu + g_{\gamma\alpha} A^\gamma) + \frac {4\pi}{c} J_\alpha$$which finally becomes$$\partial^\beta F_{\beta\alpha} + \partial^\beta(A_\mu A^\mu g_{\alpha\beta}) + \mu^2 A_\alpha = (A_\alpha + A_\alpha) + \frac {4\pi}{c} J_\alpha$$
so then the right hand side becomes ##2A_\alpha + \frac {4\pi}{c} J_\alpha##
 
  • #33
Maniac_XOX said:
i ended up using the property ##g_{\mu\gamma}\delta^\gamma_\alpha=g_{\mu\alpha}## to come up with this solution:
$$\partial^\beta F_{\beta\alpha} + \partial^\beta(A_\mu A^\mu g_{\rho\beta} \delta^\rho_\alpha) + \mu^2 A_\alpha =(\partial_\rho A^\rho) (g_{\mu\alpha} A^\mu + g_{\gamma\alpha} A^\gamma) + \frac {4\pi}{c} J_\alpha$$which finally becomes$$\partial^\beta F_{\beta\alpha} + \partial^\beta(A_\mu A^\mu g_{\alpha\beta}) + \mu^2 A_\alpha = (A_\alpha + A_\alpha) + \frac {4\pi}{c} J_\alpha$$
so then the right hand side becomes ##2A_\alpha + \frac {4\pi}{c} J_\alpha##
Apart from the ##-\beta## factor, you also lose a ##\partial_\rho A^\rho##. But yes essentially is correct. You can still simplify the RHS a little.
 
  • #34
Gaussian97 said:
Apart from the ##-\beta## factor, you also lose a ##\partial_\rho A^\rho##. But yes essentially is correct. You can still simplify the RHS a little.
Right i forgot those factors while focusing on the other stuff but yeah it's still there. Not sure how i can simplify more but a question i have involving the LHS is:
Does ##\partial^\beta(g_{\alpha\beta}A_\mu A^\mu)##
mean the same as $$\frac {\partial (g_{\alpha\beta}A_\mu A^\mu)}{\partial A^\beta}$$ ?
 
  • #35
No, the derivative is wrt the 4-position, not the ##A## field.
 
  • #36
Gaussian97 said:
No, the derivative is wrt the 4-position, not the ##A## field.
Right, so the correct definition of that would be then $$\frac {\partial (g_{\alpha\beta}A_\mu A^\mu)}{\partial t} + \frac {\partial(g_{\alpha\beta}A_\mu A^\mu)}{\partial x} + \frac {\partial(g_{\alpha\beta}A_\mu A^\mu}{\partial y} + \frac {\partial(g_{\alpha\beta}A_\mu A^\mu}{\partial z}$$
 
  • #37
No, first of all, if you expand the sum over ##\beta##, you must substitute ##\beta## everywhere. But even then, what you have is still not 100% correct, because for the derivative to be a contravariant vector ##\partial^\beta## you must differentiate wrt a covariant vector, i.e. ##x_\beta##, and the components of ##x_\beta## are not ##(t,x,y,z)##
 
  • #38
Gaussian97 said:
No, first of all, if you expand the sum over ##\beta##, you must substitute ##\beta## everywhere. But even then, what you have is still not 100% correct, because for the derivative to be a contravariant vector ##\partial^\beta## you must differentiate wrt a covariant vector, i.e. ##x_\beta##, and the components of ##x_\beta## are not ##(t,x,y,z)##
But i thought that's what the 4-position was, and i substituted the betas everywhere relevant?
 
  • #39
Maniac_XOX said:
But i thought that's what the 4-position was, and i substituted the betas everywhere relevant?
Those are the contravariant coordinates of the ##x## 4-vector, you want to take derivatives with respect to the covariant coordinates.
I don't know what you mean by relevant, if you expand ##\beta## you cannot have ##\beta## in the final expression, otherwise you did it wrong.

In any case, you can simplify this expression without any need of expanding any term.
 
  • #40
Gaussian97 said:
Those are the contravariant coordinates of the ##x## 4-vector, you want to take derivatives with respect to the covariant coordinates.
I don't know what you mean by relevant, if you expand ##\beta## you cannot have ##\beta## in the final expression, otherwise you did it wrong.

In any case, you can simplify this expression without any need of expanding any term.
Yeah I'm not planning on expanding ##\beta##. I think i understood now that ##\partial^\beta## can only be operated as $$g^{\beta\alpha} \partial_\alpha = g^{\beta\alpha} \frac{\partial}{\partial x^\alpha}$$

The most i have managed to simplify so far is to this point:
$$\partial^\beta F_{\beta\alpha} -\partial_\alpha (A_\mu A^\mu)\beta + \mu^2 A_\alpha =-2A_\alpha \beta (\partial_\rho A^\rho) + \frac {4\pi}{c} J_\alpha$$
 
Last edited:
  • #41
Ok, now that's correct (except for some index that has raised magically)
 
  • #42
true i corrected it, is that as far as i can simplify it?
$$\partial^\beta F_{\beta\alpha} + 2A_\alpha (\partial_\rho A^\rho) \beta + \mu^2 A_\alpha =+ \partial_\alpha (A_\mu A^\mu)\beta +\frac {4\pi}{c} J_\alpha$$
 
  • #43
Well, you can use the product rule to simplify it a little the derivative, and then collect the terms proportional to ##\beta##, but I don't think this will make a big difference.
 
  • #44
Gaussian97 said:
Well, you can use the product rule to simplify it a little the derivative, and then collect the terms proportional to ##\beta##, but I don't think this will make a big difference.
This time the components of ##\partial x^\alpha## are $$\frac {\partial_t}{c} + \frac{\partial}{\partial x} + \frac {\partial}{\partial y} + \frac {\partial}{\partial z}$$

Found that the equation could also become
but it could also become: $$\partial^\beta F_{\beta\alpha}+\mu^2 A_\alpha =+ \beta(A_\nu \partial_\alpha A^\nu + A_\mu \partial_\alpha A^\mu -2A_\alpha \partial_\rho A^\rho) +\frac {4\pi}{c} J_\alpha$$

Any further tips to simplify? or is this alright :)
 
Last edited:
  • #45
[EDIT] all solved now finally, thank you for the help :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
667
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K