Solving Logistic Equation Homework Problem

  • Thread starter Thread starter roam
  • Start date Start date
roam
Messages
1,265
Reaction score
12

Homework Statement



I'm having some difficulty understanding the last step of the following solved problem from my textbook:

We will compute the equilibrium points of kP \left( 1- \frac{P}{N} \right) - C.

kP \left( 1- \frac{P}{N} \right) - C =0

-kP^2+kNP - CN =0

The quadratic equations has solutions

P= \frac{N}{2} \pm \sqrt{\frac{N^2}{4}-\frac{CN}{k}}

The Attempt at a Solution



So if we start off by

-kP^2+kNP - CN =0

and using the quadratic equation:

x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

I get:

P= \frac{-kN \pm \sqrt{(kN)^2-4kC}}{2k}

= \frac{N}{2} \pm \frac{\sqrt{k^2N^2-4kC}}{2k}

So, why is my answer different from the one in the textbook? And how can I end up with the solution in the book (that I've posted above)? :confused:
 
Physics news on Phys.org
roam said:
P= \frac{-kN \pm \sqrt{(kN)^2-4kC}}{2k}

= \frac{N}{2} \pm \frac{\sqrt{k^2N^2-4kC}}{2k}

2k = \sqrt{\text{(what?)}}
 
scurty said:
2k = \sqrt{\text{(what?)}}

Oh, I see. I never thought of it. Thank you very much. :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top