EngWiPy
- 1,361
- 61
OK, thanks. I'm trying to do the mathematical derivations all over again. But I suspect it's just a technical issue with Mathematica.
For[yQdB = -10, yQdB <= 15, yQdB++;
yQ = 10^(yQdB/10);
INTEGRAND =
Simplify[1/x^2*Exp[(GSS*(x + GSS*yQ))/(x*yp) - x]*
Exp[-(GSS*(x + GSS*yQ))/(x*yp) T]/T];
A1 = 0.5*((GSS^2)*yQ)/yp*
NIntegrate[INTEGRAND, {T, 1, \[Infinity]}, {x, Cons, Infinity},
PrecisionGoal -> 5, MaxRecursion -> 12, WorkingPrecision -> 20];
Print["A1 = ", 0.5*((GSS^2)*yQ)/yp,
"\[Times] NIntegrate[ 1/x^2\[Times]Exp[ ( ", GSS, "\[Times](x +",
GSS*yQ, "))/(x\[Times]", yp, ") - x]\[Times] ExpIntegralE[1, (",
GSS, "\[Times](x + ", GSS*yQ, "))/(x\[Times]", yp, ")]"]]
yp = 10^(5/10);
GSS = 100;
Cons = 10^-7;
results = {};
For[yQdB = -10, yQdB <= 15, yQdB++;
yQ = 10^(yQdB/10);
INTEGRAND =
Simplify[1/x^2*Exp[(GSS*(x + GSS*yQ))/(x*yp) - x]*
Exp[-(GSS*(x + GSS*yQ))/(x*yp) T]/T];
A1 = 0.5*((GSS^2)*yQ)/yp*
NIntegrate[INTEGRAND, {T, 1, \[Infinity]}, {x, Cons, Infinity},
PrecisionGoal -> 5, MaxRecursion -> 12, WorkingPrecision -> 20];
results = Join[results, {yQdB, A1}];
Print[{yQdB, A1}];]