Solving Schrodinger's eqn using ladder operators for potential V

Click For Summary
SUMMARY

The discussion focuses on solving the Schrödinger equation using ladder operators for various potentials, specifically highlighting the Hamiltonian expressed in terms of these operators. The key equations include the ladder operators defined as $$\hat a_\pm = \frac{1}{\sqrt{2m}}[\hat p \pm i\sqrt{2m\hat V}]$$ and the Hamiltonian $$\hat H = \frac{1}{2m}[\hat p^2 + 2m\hat V]$$. The analysis reveals that while this method can yield solutions for certain potentials, it is primarily effective for harmonic oscillators and angular-momentum eigenvalue problems, as indicated by the limitations of the approach when applied to arbitrary potentials.

PREREQUISITES
  • Understanding of the Schrödinger equation and its components
  • Familiarity with quantum mechanics concepts such as Hamiltonians and wave functions
  • Knowledge of ladder operators and their mathematical formulation
  • Basic grasp of potential energy functions in quantum systems
NEXT STEPS
  • Explore the application of ladder operators in quantum harmonic oscillators
  • Research the factorization of the Hamiltonian in quantum mechanics
  • Study the implications of Lie algebras in quantum systems
  • Investigate the specific cases of potentials, particularly $$V=0$$ and $$V\propto x^2$$
USEFUL FOR

Quantum physicists, graduate students in physics, and researchers interested in advanced quantum mechanics and the mathematical techniques for solving the Schrödinger equation.

Hamiltonian
Messages
296
Reaction score
193
The Schrödinger equation:
$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + \hat V\psi = E\psi$$
$$\frac{1}{2m}[\hat p^2 + 2m\hat V ]\psi = E\psi$$
The ladder operators:
$$\hat a_\pm = \frac{1}{\sqrt{2m}}[\hat p \pm i\sqrt{2m\hat V}]$$

$$\hat a_\pm \hat a_\mp = \frac{1}{2m}[\hat p^2 + (2m\hat V) \mp i\sqrt{2m}[\hat p,\hat V ^{1/2}]]$$
The Hamiltonian:
$$\hat H = \frac{1}{2m}[\hat p^2 +2m\hat V]$$
The Hamiltonian in terms of the ladder operator:
$$\hat H = \hat a_\pm \hat a_\mp \pm {\frac{i}{\sqrt{2m}} [\hat p, \hat V^{1/2}]} $$
finding ##\hat H(\hat a_- \psi)##:
$$\hat H(\hat a_- \psi) = [\hat a_-\hat a_+ \frac{i}{\sqrt{2m}}[\hat p, \hat V^{1/2}]](\hat a_- \psi)$$
$$\hat H(\hat a_- \psi) = \hat a_-[E - \frac{2i}{\sqrt{2m}}[\hat p, \hat V^{1/2}]](\psi)$$

If we apply the lowering operator repeatedly we will eventually reach a state with energy less than zero, which do not exist.
$$\hat a_- \psi_0 = 0$$
$$[\hat p - i(2m\hat V)^{1/2}]\psi_0 = 0$$
$$[-i\hbar\frac{d}{dx} -i \sqrt{2mV(x)}]\psi_0 = 0$$
$$\psi_0(x) = -\int {\frac{\sqrt{2mV(x)}}{\hbar}dx}$$
$$\psi_n(x) = A_n(\hat a_+)^n \psi_0(x)$$
where ##\psi_0## is the ground state wave function solution.
Is this a correct way to give a general solution of the Schrödinger equation for any potential?
 
Last edited:
Physics news on Phys.org
Hamiltonian299792458 said:
Is this a correct way to give a general solution of the Schrödinger equation for any potential?
You can quickly check whether you have a general solution by trying it on the special case ##V=0##. Try this and you’ll likely see that the harmonic oscillator potential has a property required for this approach to work that is not found in more general potentials.
 
  • Like
Likes   Reactions: gentzen, Demystifier and BvU
Hamiltonian299792458 said:
$$\psi_0(x) = -\int {\frac{\sqrt{2mV(x)}}{\hbar}dx}$$
$$\psi_n(x) = A_n(\hat a_+)^n \psi_0(x)$$
where ##\psi_0## is the ground state wave function solution.
Is this a correct way to give a general solution of the Schrödinger equation for any potential?
I made a small error here, ##\psi_0## is supposed to be:
$$\psi_0(x) = e^{\int -\frac{\sqrt{2mV(x)}}{\hbar} dx}$$
Nugatory said:
You can quickly check whether you have a general solution by trying it on the special case ##V=0##. Try this and you’ll likely see that the harmonic oscillator potential has a property required for this approach to work that is not found in more general potentials.
Is there a way to account for the case where ##V(x) = 0##?
Leaving aside this case the final siltion should hold true for any arbitrary potential ##V(x)##?
 
The "lowering operators" do not really lower energy. Instead, they multiply ##\psi(x)## by a function that depends on ##x## (except in the cases ##V=0## and ##V\propto x^2##), so it cannot be interpreted as a number times ##\psi(x)## .
 
This technique is pretty much restricted to the harmonic oscillator and the angular-momentum eigenvalue problems, and the latter is even also reducible to the symmetric harmonic-oscillator problem in 2 dimensions. So one can expect that most of the problems, where this "factorization of the Hamiltonian" approach works, is due to symmetries reducing to the harmonic oscillators in ##d## dimensions and thus related to the Lie algebras of the SU(d) groups. Schrödinger has written (at least) two papers about this too:

https://www.jstor.org/stable/20490744
https://www.jstor.org/stable/20490756
 
  • Like
Likes   Reactions: BvU and Hamiltonian

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 56 ·
2
Replies
56
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K