A Solving Schrödinger's Equation with a Smooth Potential Wall: A Detailed Guide

paul159753
Messages
2
Reaction score
0
TL;DR Summary
I'm looking for help for an exercise of the chapter III. Schrödinger's equation, §25 The transmission coefficient (problem 3).
Hello everyone,

I'm looking for help for the problem 3 of the chapter III. Schrödinger's equation, §25 The transmission coefficient of the Volume 3 of the Landau-Lifshitz book (non-relativistic QM).

In this exercise Landau considers a smooth potential wall $$\frac{U_0}{1 + \exp{\left(-\alpha x \right)}}.$$ We search solutions for ##E > U_0##.
So we have to solve $$\frac{d^2}{dx^2}\Psi + \frac{2m}{\hbar^2}\left(E - \frac{U_0}{1 + \exp{\left(-\alpha x \right)}}\right)\Psi = 0.$$ We do the change of variable ##\xi = -\exp{\left(-\alpha x \right)}##. We write the derivative operator $$\frac{d^2}{dx^2}= \left(\frac{d\xi}{dx}\frac{d}{d\xi}\right)^2 = \alpha^2 \xi \frac{d}{d\xi} + \alpha^2 \xi ^2 \frac{d^2}{d\xi^2}.$$ Noting ##k_2^2 = 2m(E-U_0)/\hbar^2,\ k_1^2 = 2mE/\hbar^2## we can rewrite the equation $$\frac{d^2}{dx^2}\Psi + \left(\frac{k_2^2 - \xi k_1 ^2}{1 - \xi}\right)\Psi = 0.$$ We look for solutions of the form ##\Psi = \xi ^{-ik_2/\alpha} \omega(\xi)##. Multiplying the equation by ##1-\xi## and dividing by ##\alpha^2 \xi \xi ^{-ik_2/\alpha}## we get the following equation for ##\omega(\xi)## : $$ \xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 - ik_2/\alpha \frac{(1-\xi)}{\xi} \right)\omega(\xi) = 0.$$
My problem is that Landau found $$\xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 \right)\omega(\xi) = 0, $$ so the same thing but without the ##- ik_2/\alpha \frac{(1-\xi)}{\xi}\omega(\xi)## term. So he gets an hypergeometric equation and I don't. I don't know where my mistakes are.

Any help would be much appreciated.

Thanks !
 
Last edited:
Physics news on Phys.org
paul159753 said:
Multiplying the equation by ##1-\xi## and dividing by ##\alpha^2 \xi \xi ^{-ik_2/\alpha}## we get the following equation for ##\omega(\xi)## : $$ \xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 - ik_2/\alpha \frac{(1-\xi)}{\xi} \right)\omega(\xi) = 0.$$
My problem is that Landau found $$\xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 \right)\omega(\xi) = 0, $$ so the same thing but without the ##- ik_2/\alpha \frac{(1-\xi)}{\xi}\omega(\xi)## term. So he gets an hypergeometric equation and I don't. I don't know where my mistakes are.

Any help would be much appreciated.

Thanks !
When you expand the Schrodinger equation out, you should get cancellation of all the terms proportional to ##i\omega(\xi)##. It looks like you just have a simple algebra error buried in your work somewhere. Try writing out explicitly your result for $$\frac{1}{\alpha^2}\frac{d^2}{dx^2}\Psi$$
The offending terms should cancel in that step.
 
I'm really dumb, I see where my mistake was thanks !
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top