A Solving Schrödinger's Equation with a Smooth Potential Wall: A Detailed Guide

Click For Summary
The discussion focuses on solving a specific problem from Landau-Lifshitz's book regarding Schrödinger's equation with a smooth potential wall. The user is attempting to derive a hypergeometric equation but encounters an additional term that complicates their solution. A fellow participant suggests that the issue likely stems from a simple algebra error during the expansion of the Schrödinger equation. After reviewing their work, the user realizes the mistake and expresses gratitude for the assistance. The conversation highlights the importance of careful algebraic manipulation in quantum mechanics problem-solving.
paul159753
Messages
2
Reaction score
0
TL;DR
I'm looking for help for an exercise of the chapter III. Schrödinger's equation, §25 The transmission coefficient (problem 3).
Hello everyone,

I'm looking for help for the problem 3 of the chapter III. Schrödinger's equation, §25 The transmission coefficient of the Volume 3 of the Landau-Lifshitz book (non-relativistic QM).

In this exercise Landau considers a smooth potential wall $$\frac{U_0}{1 + \exp{\left(-\alpha x \right)}}.$$ We search solutions for ##E > U_0##.
So we have to solve $$\frac{d^2}{dx^2}\Psi + \frac{2m}{\hbar^2}\left(E - \frac{U_0}{1 + \exp{\left(-\alpha x \right)}}\right)\Psi = 0.$$ We do the change of variable ##\xi = -\exp{\left(-\alpha x \right)}##. We write the derivative operator $$\frac{d^2}{dx^2}= \left(\frac{d\xi}{dx}\frac{d}{d\xi}\right)^2 = \alpha^2 \xi \frac{d}{d\xi} + \alpha^2 \xi ^2 \frac{d^2}{d\xi^2}.$$ Noting ##k_2^2 = 2m(E-U_0)/\hbar^2,\ k_1^2 = 2mE/\hbar^2## we can rewrite the equation $$\frac{d^2}{dx^2}\Psi + \left(\frac{k_2^2 - \xi k_1 ^2}{1 - \xi}\right)\Psi = 0.$$ We look for solutions of the form ##\Psi = \xi ^{-ik_2/\alpha} \omega(\xi)##. Multiplying the equation by ##1-\xi## and dividing by ##\alpha^2 \xi \xi ^{-ik_2/\alpha}## we get the following equation for ##\omega(\xi)## : $$ \xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 - ik_2/\alpha \frac{(1-\xi)}{\xi} \right)\omega(\xi) = 0.$$
My problem is that Landau found $$\xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 \right)\omega(\xi) = 0, $$ so the same thing but without the ##- ik_2/\alpha \frac{(1-\xi)}{\xi}\omega(\xi)## term. So he gets an hypergeometric equation and I don't. I don't know where my mistakes are.

Any help would be much appreciated.

Thanks !
 
Last edited:
Physics news on Phys.org
paul159753 said:
Multiplying the equation by ##1-\xi## and dividing by ##\alpha^2 \xi \xi ^{-ik_2/\alpha}## we get the following equation for ##\omega(\xi)## : $$ \xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 - ik_2/\alpha \frac{(1-\xi)}{\xi} \right)\omega(\xi) = 0.$$
My problem is that Landau found $$\xi(1-\xi)\frac{d^2}{d\xi^2}\omega(\xi) + (1-\xi)\left(1 - 2ik_2 / \alpha\right)\frac{d}{d\xi}\omega(\xi) + \left((k_2^2 - k_1^2)/\alpha^2 \right)\omega(\xi) = 0, $$ so the same thing but without the ##- ik_2/\alpha \frac{(1-\xi)}{\xi}\omega(\xi)## term. So he gets an hypergeometric equation and I don't. I don't know where my mistakes are.

Any help would be much appreciated.

Thanks !
When you expand the Schrodinger equation out, you should get cancellation of all the terms proportional to ##i\omega(\xi)##. It looks like you just have a simple algebra error buried in your work somewhere. Try writing out explicitly your result for $$\frac{1}{\alpha^2}\frac{d^2}{dx^2}\Psi$$
The offending terms should cancel in that step.
 
I'm really dumb, I see where my mistake was thanks !
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...