Solving the DE for $\phi$: Find $A,B,\phi$.

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the differential equation for the function $\phi$ defined in the intervals $I=(0,1)$ and outside of it. The solution involves computing constants $A$, $B$, and the function $\phi$ itself, which is expressed in piecewise form. The final values derived for the constants are $B=\frac{2e^{-ik}}{2-ik}$, $c_1=\frac{2ik}{2-ik}$, $c_2=\frac{2i+2k}{2i+k}$, and $A=\frac{k}{2i+k}$. The participants confirm the correctness of these values through collaborative verification.

PREREQUISITES
  • Understanding of differential equations, specifically second-order linear equations.
  • Familiarity with boundary conditions and continuity of derivatives.
  • Knowledge of complex exponentials and their properties.
  • Ability to manipulate limits and continuity in mathematical functions.
NEXT STEPS
  • Study the properties of second-order linear differential equations.
  • Learn about boundary value problems and their solutions.
  • Explore the application of complex analysis in solving differential equations.
  • Investigate numerical methods for approximating solutions to differential equations.
USEFUL FOR

Mathematicians, physics students, and engineers who are working with differential equations and boundary value problems will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)
Let $I=(0,1)$. Find solution $\phi$ that has a continuous derivative in $\mathbb{R}$ and satisfies:

$$y''=0 \text{ in } I \\ y''+k^2y=0 \text{ apart from I , where k>0}$$

and furthermore $\phi$ has the form:$\left\{\begin{matrix}
e^{ikx}+ A e^{-ikx} &, x \leq 0 \\
B e^{ikx} &, x \geq 1
\end{matrix}\right.$

i.e. find $\phi$ computing the constants $A,B$ and computing $\phi$ in the interval $I$.I have tried the following:

$\phi$ satisfies the differential equation $y''=0$ in $I$.

So $\phi''(x)=0 \Rightarrow \phi(x)= c_1 x + c_2, c_1, c_2 \in \mathbb{R}, \forall x \in I$.

$\phi$ has a continuous derivative in $\mathbb{R}$, so:

$$\lim_{x \to 0^{-1}} \phi(x)= \lim_{x \to 0^{+}} \phi(x) \\ \lim_{x \to 1^{-1}} \phi(x)= \lim_{x \to 1^{+}} \phi(x) \\ \lim_{x \to 0^{-1}} \phi'(x)= \lim_{x \to 0^{+}} \phi'(x) \\ \lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) $$
$\lim_{x \to 0^{-1}} \phi(x)= \lim_{x \to 0^{+}} \phi(x) \Rightarrow 1+A=c_2 (\star)$

$\lim_{x \to 1^{-1}} \phi(x)= \lim_{x \to 1^{+}} \phi(x) \Rightarrow Be^{ik}=c_1+c_2 (\star \star)$

$\lim_{x \to 0^{-1}} \phi'(x)= \lim_{x \to 0^{+}} \phi'(x) \Rightarrow ik-ikA=c_1 (1)$

$\lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) \Rightarrow ik e^{ik}-ik A e^{-ik}=c_1 (2)$

$(1), (2) \Rightarrow ike^{ik}-ikAe^{-ik}=ik-ikA \Rightarrow A= \frac{e^{ik}-1}{e^{-ik}-1}$

Thus, $c_1=ik \frac{e^{-ik}-e^{ik}}{e^{-ik}-1}$

$(\star) \Rightarrow c_2=\frac{e^{-ik}+e^{ik}-2}{e^{-ik}-1}$

$(\star \star) \Rightarrow B=\frac{e^{-2ik}(ik+1)+(1-ik)-2}{e^{-ik}-1}$.Therefore,$\phi(x)=\left\{\begin{matrix}
e^{ikx}+ \frac{e^{ik}-1}{e^{-ik}-1} e^{-ikx} &, x \leq 0 \\
\frac{e^{-2ik}(ik+1)+(1-ik)-2}{e^{-ik}-1} e^{ikx} &, x \geq 1
\end{matrix}\right.$

and $\phi(x)=ik \frac{e^{-ik}-e^{ik}}{e^{-ik}-1} x+\frac{e^{-ik}+e^{ik}-2}{e^{-ik}-1} $ in $I$.

Is it right or have I done something wrong? (Thinking)
 
Physics news on Phys.org
Hey! (Evilgrin)

evinda said:
$\lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) \Rightarrow ik e^{ik}-ik A e^{-ik}=c_1 (2)$

Shouldn't that be:
$$\lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) \Rightarrow c_1 = B e^{ik} \qquad\qquad(2)$$
? (Wasntme)
 
I like Serena said:
Hey! (Evilgrin)
Shouldn't that be:
$$\lim_{x \to 1^{-1}} \phi'(x)= \lim_{x \to 1^{+}} \phi'(x) \Rightarrow c_1 = B e^{ik} \qquad\qquad(2)$$
? (Wasntme)

I retried it now... Don't we get $c_1= B ik e^{ik}$ ? Or am I wrong? (Thinking)
 
evinda said:
I retried it now... Don't we get $c_1= B ik e^{ik}$ ? Or am I wrong? (Thinking)

You're right... I forgot to take the derivative... (Blush)
It's a bicycle! (Mmm)
 
I like Serena said:
You're right... I forgot to take the derivative... (Blush)
It's a bicycle! (Mmm)

So will we have the followng values? (Thinking)

$$B=\frac{2e^{-ik}}{2-ik} \\ c_1= \frac{2ik}{2-ik} \\ c_2=\frac{2i+2k}{2i+k} \\ A=\frac{k}{2i+k}$$
 
evinda said:
So will we have the followng values? (Thinking)

$$B=\frac{2e^{-ik}}{2-ik} \\ c_1= \frac{2ik}{2-ik} \\ c_2=\frac{2i+2k}{2i+k} \\ A=\frac{k}{2i+k}$$

That's what I get as well. (Nod)
 
I like Serena said:
That's what I get as well. (Nod)

Great... Thanks a lot! (Whew)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K