MHB Solving the Integral of sqrt{x^2+1} Using Substitution

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral of sqrt{x^2+1} can be solved using substitution and hyperbolic trigonometric identities. By letting u = a sinh(x), the integral transforms into a form involving cosh^2(x), which simplifies further using known identities. The final result is expressed as I = (u/2)√(u²+a²) + (a²/2)ln(u + √(u²+a²)) + C. The discussion highlights the importance of recognizing the relationships between hyperbolic functions and their derivatives to derive the integral effectively. Understanding these substitutions clarifies the integration process.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
I know this was done before on this forum but can't find it

$\displaystyle \int\sqrt{x^2+1}\ dx%$

$\text{where $u=x$ and $a=1$ then plug}$

$\displaystyle \frac{u}{2}\sqrt{u^2+a^2} + \frac{a^2}{2}\ln\left| u+\sqrt{u^2+a^2}\right|$

how is this derived?
 
Last edited by a moderator:
Physics news on Phys.org
Re: int sqrt{x^2+1}

Let's begin with:

$$I=\int\sqrt{u^2+a^2}\,du$$

Now, consider the hyperbolic trig. identity:

$$\cosh^2(x)=\sinh^2(x)+1$$

Hence, for some positive real constant $a$, we have:

$$a^2\cosh^2(x)=a^2\sinh^2(x)+a^2$$

And so if we use:

$$u=a\sinh(x)\implies du=a\cosh(x)$$

The integral becomes:

$$I=a^2\int \cosh^2(x)\,dx$$

Next, consider the identiy:

$$\cosh^2(x)=\frac{\cosh(2x)+1}{2}$$

And our integral becomes:

$$I=\frac{a^2}{2}\int \cosh(2x)+1\,dx=\frac{a^2}{2}\left(\frac{1}{2}\sinh(2x)+x\right)+C$$

Next, consider the identity:

$$\sinh(2x)=2\sinh(x)\cosh(x)$$

and an implication of a previously used identity:

$$\cosh(x)=\sqrt{\sinh^2(x)+1}$$

And we have:

$$I=\frac{a^2}{2}\left(\sinh(x)\sqrt{\sinh^2(x)+1}+x\right)+C$$

Back-substitute for $x$:

$$I=\frac{a^2}{2}\left(\frac{u}{a}\sqrt{\left(\frac{u}{a}\right)^2+1}+\arsinh\left(\frac{u}{a}\right)\right)+C$$

$$I=\frac{u}{2}\sqrt{u^2+a^2}+\frac{a^2}{2}\arsinh\left(\frac{u}{a}\right)+C$$

Now, consider the identity:

$$\arsinh(x)=\ln\left(x+\sqrt{x^2+1}\right)$$

And we have:

$$I=\frac{u}{2}\sqrt{u^2+a^2}+\frac{a^2}{2}\ln\left(\frac{u}{a}+\sqrt{\left(\frac{u}{a}\right)^2+1}\right)+C$$

$$I=\frac{u}{2}\sqrt{u^2+a^2}+\frac{a^2}{2}\ln\left(u+\sqrt{u^2+a^2}\right)-\frac{a^2}{2}\ln(a)+C$$

Since $$\frac{a^2}{2}\ln(a)$$ is a constant, we may write:

$$I=\frac{u}{2}\sqrt{u^2+a^2}+\frac{a^2}{2}\ln\left(u+\sqrt{u^2+a^2}\right)+C$$
 
very helpful

I can see now why its a plug in equation

i tried it for a few steps but I lost the trail thru the woods
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
3K