MHB Solving the Limit of an Infinite Series

AI Thread Summary
The discussion centers on evaluating the limit of an infinite series using various methods. A proposed limit, \[\lim_{n \to{+}\infty}{\frac{1}{n}\sum_{i=1}^n({1+\frac{i}{n}}})^{-2}\], is solved using a Riemann sum approach, yielding a result of \(\frac{1}{2}\). Participants emphasize the importance of exploring multiple methods for solving the problem. There is a call for the original poster to share their own solution technique, as the problem has already been addressed satisfactorily. The conversation highlights the collaborative nature of problem-solving in mathematical forums.
jeffer vitola
Messages
25
Reaction score
0
hello ... I propose this exercise for you to solve on various methods ...\[\lim_{n \to{+}\infty}{\frac{1}{n}\sum_{i=1}^n({1+\frac{i}{n}}})^{-2}\]thanks

att
jefferson alexander vitola(Smile)
 
Mathematics news on Phys.org
I have moved this topic, as it seems to be posted as a challenge rather than for help.
 
jeffer vitola said:
\[\lim_{n \to{+}\infty}{\frac{1}{n}\sum_{i=1}^n({1+\frac{i}{n}}})^{-2}\]

This can be solved directly using the Riemann sum

$$ \lim_{n \to{+}\infty} \sum_{i=1}^n \frac{n}{(n+i)^2}=\int^2_1 \frac{1}{x^2}\, dx = \frac{1}{2}$$
 
ZaidAlyafey said:
This can be solved directly using the Riemann sum

$$ \lim_{n \to{+}\infty} \sum_{i=1}^n \frac{n}{(n+i)^2}=\int^2_1 \frac{1}{x^2}\, dx = \frac{1}{2}$$

hello...interesting, but as I said in my previous forum topic or main focus is that you develop by various methods ... one can be evaluated by the summation properties and then calculate its limit for example,,,,,,,, if you are can't make exercise , there is not problem,,,, thanks...

att
jefferson alexander vitola (Smile)
 
jeffer vitola said:
hello...interesting, but as I said in my previous forum topic or main focus is that you develop by various methods ... one can be evaluated by the summation properties and then calculate its limit for example,,,,,,,, if you are can't make exercise , there is not problem,,,, thanks...

att
jefferson alexander vitola (Smile)

Zaid has shown you a very straightforward method to evaluate the sum. Your initial post said only "solve on various methods." And this is what Zaid has done.

Why don't you demonstrate the technique you have? We expect that when people post problems as a challenge, they have a solution which they post if the problem has not been solved within about a week's time. Although this problem has been solved, but seemingly not to your satisfaction, it is now time for you to show us your solution.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top