MHB Solving the Mystery of the Table: Explaining $g = (123)$

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Mystery Table
Guest2
Messages
192
Reaction score
0
View attachment 5399

Could someone please explain how they're getting the answers in the table, for example $g = (123)$.
 

Attachments

  • Screen Shot 2016-03-14 at 13.53.08.png
    Screen Shot 2016-03-14 at 13.53.08.png
    23.3 KB · Views: 103
Physics news on Phys.org
$$(123)(1)$$

$(123)$ represents the function that maps $1$ to $2$, $2$ to $3$ and $3$ to $1$.
$(1)$ represents the identity function, i.e. the function that maps $1$ to $1$, $2$ to $2$ and $3$ to $3$.

So to compute $(123)(1)$ we do the following:

From the right cycle we have that $1$ is mapped to $1$, and at the first cycle $1$ is mapped to $2$, therefore we get that $1$ is mapped to $2$.
From the right cycle we have that $2$ is mapped to $2$, and at the first cycle $2$ is mapped to $3$, therefore we get that $2$ is mapped to $3$.
From the right cycle we have that $3$ is mapped to $3$, and at the first cycle $3$ is mapped to $1$, therefore we get that $3$ is mapped to $1$.

So, we get $(123)(1)=(123)$.
$$(123)(12)$$

$(123)$ represents the function that maps $1$ to $2$, $2$ to $3$ and $3$ to $1$.
$(12)$ represents the function that maps $1$ to $2$, $2$ to $1$ and $3$ to $3$.

So to compute $(123)(12)$ we do the following:

From the right cycle we have that $1$ is mapped to $2$, and at the first cycle $2$ is mapped to $3$, therefore we get that $1$ is mapped to $3$.
From the right cycle we have that $2$ is mapped to $1$, and at the first cycle $1$ is mapped to $2$, therefore we get that $2$ is mapped to $2$.
From the right cycle we have that $3$ is mapped to $3$, and at the first cycle $3$ is mapped to $1$, therefore we get that $3$ is mapped to $1$.

So, we get $(123)(12)=(13)$.
 
mathmari said:
$$(123)(1)$$

$(123)$ represents the function that maps $1$ to $2$, $2$ to $3$ and $3$ to $1$.
$(1)$ represents the identity function, i.e. the function that maps $1$ to $1$, $2$ to $2$ and $3$ to $3$.

So to compute $(123)(1)$ we do the following:

From the right cycle we have that $1$ is mapped to $1$, and at the first cycle $1$ is mapped to $2$, therefore we get that $1$ is mapped to $2$.
From the right cycle we have that $2$ is mapped to $2$, and at the first cycle $2$ is mapped to $3$, therefore we get that $2$ is mapped to $3$.
From the right cycle we have that $3$ is mapped to $3$, and at the first cycle $3$ is mapped to $1$, therefore we get that $3$ is mapped to $1$.

So, we get $(123)(1)=(123)$.
$$(123)(12)$$

$(123)$ represents the function that maps $1$ to $2$, $2$ to $3$ and $3$ to $1$.
$(12)$ represents the function that maps $1$ to $2$, $2$ to $1$ and $3$ to $3$.

So to compute $(123)(12)$ we do the following:

From the right cycle we have that $1$ is mapped to $2$, and at the first cycle $2$ is mapped to $3$, therefore we get that $1$ is mapped to $3$.
From the right cycle we have that $2$ is mapped to $1$, and at the first cycle $1$ is mapped to $2$, therefore we get that $2$ is mapped to $2$.
From the right cycle we have that $3$ is mapped to $3$, and at the first cycle $3$ is mapped to $1$, therefore we get that $3$ is mapped to $1$.

So, we get $(123)(12)=(13)$.
Wonderful explanations, thanks!
 
mathmari said:
$$(123)(1)$$

$(123)$ represents the function that maps $1$ to $2$, $2$ to $3$ and $3$ to $1$.
$(1)$ represents the identity function, i.e. the function that maps $1$ to $1$, $2$ to $2$ and $3$ to $3$.

So to compute $(123)(1)$ we do the following:

From the right cycle we have that $1$ is mapped to $1$, and at the first cycle $1$ is mapped to $2$, therefore we get that $1$ is mapped to $2$.
From the right cycle we have that $2$ is mapped to $2$, and at the first cycle $2$ is mapped to $3$, therefore we get that $2$ is mapped to $3$.
From the right cycle we have that $3$ is mapped to $3$, and at the first cycle $3$ is mapped to $1$, therefore we get that $3$ is mapped to $1$.

So, we get $(123)(1)=(123)$.

$$(123)(12)$$

$(123)$ represents the function that maps $1$ to $2$, $2$ to $3$ and $3$ to $1$.
$(12)$ represents the function that maps $1$ to $2$, $2$ to $1$ and $3$ to $3$.

So to compute $(123)(12)$ we do the following:

From the right cycle we have that $1$ is mapped to $2$, and at the first cycle $2$ is mapped to $3$, therefore we get that $1$ is mapped to $3$.
From the right cycle we have that $2$ is mapped to $1$, and at the first cycle $1$ is mapped to $2$, therefore we get that $2$ is mapped to $2$.
From the right cycle we have that $3$ is mapped to $3$, and at the first cycle $3$ is mapped to $1$, therefore we get that $3$ is mapped to $1$.

So, we get $(123)(12)=(13)$.

Spoken like a pro.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Replies
17
Views
8K
Replies
3
Views
2K
Replies
2
Views
2K
Replies
8
Views
2K
Replies
13
Views
1K
Replies
4
Views
2K
Replies
8
Views
982
Replies
2
Views
2K
Back
Top