Solving the Quantum Mechanics of a Hydrogen Atom

Click For Summary
SUMMARY

The discussion focuses on the quantum mechanics of a hydrogen atom, specifically the probability density of finding an electron before measurement. The correct approach involves using a statistical operator, denoted as ##\hat{\rho}##, to describe the state of the electron, and observables are represented by self-adjoint operators. The probability distribution for measuring an observable ##O## is calculated using the formula $$\sum_{\alpha} \langle o,\alpha|\hat{\rho}|\langle o,\alpha \rangle$$. The thermal-equilibrium state is represented by the statistical operator $$\hat{\rho}=\frac{1}{Z} \exp(-\beta \hat{H})$$, where ##Z## is the partition function and ##\beta=1/(k T)##.

PREREQUISITES
  • Understanding of quantum mechanics concepts, specifically states and observables.
  • Familiarity with statistical operators and their properties.
  • Knowledge of energy eigenvectors and their role in quantum systems.
  • Basic grasp of thermal equilibrium and the Boltzmann factor in statistical mechanics.
NEXT STEPS
  • Study the derivation and implications of the statistical operator in quantum mechanics.
  • Learn about the role of self-adjoint operators in quantum observables.
  • Explore the concept of thermal states and the partition function in statistical mechanics.
  • Investigate the differences between Bose-Einstein and Fermi-Dirac statistics in many-body physics.
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers interested in the statistical mechanics of quantum systems will benefit from this discussion.

frustrationboltzmann
Messages
5
Reaction score
2
Hello, I have a little problem understanding the quantum mechanics of a hydrogen atom.
Im troubled with the following question: before i measure the state of a (simplified: without fine-, hyperfinestructure) hydrogen atom, which is the right probability density of finding the electron? is it the density of the groud state (s) or the 2s, 3s...?

my assumption is the following:
the probability of a state to be occupied is given by the fermi dirac distribution for a certain temperature. so in order to get the probability density of the location of the electron before it is measured, I multiply each (normalized) probability density with the occupation probability of every eigenstate and sum over all those products. is this right or complete nonsense?

also if its right, how would I treat degenerated quantum states. my assumption. multiply every degenerated states by the probability of the fermi dirac distribution and divide by the number of degenerated states, since I assume that they all have the same probability.

this would be a mixed state, no?

I appreciate any help!
thank you very much
 
  • Like
Likes   Reactions: dextercioby
Physics news on Phys.org
First of all you have to get the concepts right. In quantum theory you have to clearly distinguish between "states" and "observables". You cannot "measure states" in the usual sense but only observables.

The state of the electron is in general described by a statistical operator, i.e., a self-adjoint positive semidefinite operator with trace 1, ##\hat{\rho}##.

Then observables are described by self-adjoint operators too. The possible outcome of measuring an observable ##O##, represented by a self-adjoint operator ##\hat{O}## are the (generalized) eigenvalues of this operator. Then for each (generalized) eigenvalue ##o## of ##\hat{O}## there exists a orthonormal set of eigenvectors ##|o,\alpha \rangle## with ##\langle o,\alpha|o',\alpha' \rangle=\delta_{oo'} \delta_{\alpha \alpha'}##. If there are eigenvalues in the continuum (which can also be the case for the parameter(s) ##\alpha##) then the Kronecker ##\delta##'s become Dirac ##\delta## distributions.

If the system is prepared in the state described by the statistical operator ##\hat{\rho}##, then the probability (distribution) for finding the value ##o## when measuring ##O## is given by
$$\sum_{\alpha} \langle o,\alpha|\hat{\rho}|\langle o,\alpha \rangle.$$
For the hydrogen atom (at rest) you can use energy eigenvectors as a complete set. To fully determine the eigenvectors you can diagonalize the compatible operators ##\hat{\vec{L}}^2## and ##\hat{L}_z## as well as the spin ##\hat{s}_z## of the electron (the usual non-relativistic approximation).

Then you get energy eigenvectors for the discrete part of the spectrum (bound states)
$$|E_n,l,m,s_z \rangle, \quad E_{n} =-\frac{13.6 \; \text{eV}}{n^2}, \quad n \in \{1,2,3,\ldots \}, \quad l \in \{0,1,2,\ldots\}, \quad m \in \{-l,-l+1,...,l-1,l \}, \quad s_z \in \{-1/2,1/2 \}.$$
and generalized eigenvectors for the continuous part (scattering states)
$$|E,l,m,s_z \rangle \quad \text{with} \quad E>0, \quad l,m,s_z \quad \text{as for the bound states}.$$
The thermal-equilibrium state is given by the stat. op.
$$\hat{\rho}=\frac{1}{Z} \exp(-\beta \hat{H}), \quad \beta=1/(k T), \quad Z=\mathrm{Tr} \exp(-\beta \hat{H}).$$
The energy eigenstates are also eigenstates of the thermal-equilibrium state of course, and you can use the basis to evaluate all probabilities with the above given rules.
 
  • Like
Likes   Reactions: weirdoguy
vanhees71 said:
First of all you have to get the concepts right. In quantum theory you have to clearly distinguish between "states" and "observables". You cannot "measure states" in the usual sense but only observables.

The state of the electron is in general described by a statistical operator, i.e., a self-adjoint positive semidefinite operator with trace 1, ##\hat{\rho}##.

Then observables are described by self-adjoint operators too. The possible outcome of measuring an observable ##O##, represented by a self-adjoint operator ##\hat{O}## are the (generalized) eigenvalues of this operator. Then for each (generalized) eigenvalue ##o## of ##\hat{O}## there exists a orthonormal set of eigenvectors ##|o,\alpha \rangle## with ##\langle o,\alpha|o',\alpha' \rangle=\delta_{oo'} \delta_{\alpha \alpha'}##. If there are eigenvalues in the continuum (which can also be the case for the parameter(s) ##\alpha##) then the Kronecker ##\delta##'s become Dirac ##\delta## distributions.

If the system is prepared in the state described by the statistical operator ##\hat{\rho}##, then the probability (distribution) for finding the value ##o## when measuring ##O## is given by
$$\sum_{\alpha} \langle o,\alpha|\hat{\rho}|\langle o,\alpha \rangle.$$
For the hydrogen atom (at rest) you can use energy eigenvectors as a complete set. To fully determine the eigenvectors you can diagonalize the compatible operators ##\hat{\vec{L}}^2## and ##\hat{L}_z## as well as the spin ##\hat{s}_z## of the electron (the usual non-relativistic approximation).

Then you get energy eigenvectors for the discrete part of the spectrum (bound states)
$$|E_n,l,m,s_z \rangle, \quad E_{n} =-\frac{13.6 \; \text{eV}}{n^2}, \quad n \in \{1,2,3,\ldots \}, \quad l \in \{0,1,2,\ldots\}, \quad m \in \{-l,-l+1,...,l-1,l \}, \quad s_z \in \{-1/2,1/2 \}.$$
and generalized eigenvectors for the continuous part (scattering states)
$$|E,l,m,s_z \rangle \quad \text{with} \quad E>0, \quad l,m,s_z \quad \text{as for the bound states}.$$
The thermal-equilibrium state is given by the stat. op.
$$\hat{\rho}=\frac{1}{Z} \exp(-\beta \hat{H}), \quad \beta=1/(k T), \quad Z=\mathrm{Tr} \exp(-\beta \hat{H}).$$
The energy eigenstates are also eigenstates of the thermal-equilib state of course, and you can basis to evaluate all probabilities with the above given rules.

Thank you for this detailled answer. 1 question remains unclear. Why do I use the Boltzmann factor here and not the fermi dirac probability since electrons are fermions and its not a classical system?
 
Here you deal only with 1 electron, and for one particle you don't recognize whether it's a boson or a fermion.

In many-body physics the statistical operator for the grand-canonical potential is still
$$\hat{\rho}=\frac{1}{Z} \exp[-\beta (\hat{H}-\mu \hat{Q} ],$$
but this time ##\hat{H}## is the quantum-field theoretical Hamiltonian, and ##\hat{Q}## is some conserved charge (or in non-relativistic physics often the particle number).

Here the Bose or Fermi nature of the particle comes in naturally due to field quantization in terms of commutators or anticommutators, respectively.
 
  • Like
Likes   Reactions: frustrationboltzmann

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K