songoku
- 2,467
- 382
- Homework Statement
- Given that u(x,t) is displacement of string vibration, find the solution of the following wave equation based on the initial and boundary conditions:
##u_{tt}=u_{xx}, 0<x<2##
##u(0)=u(2)=0##
##u(x,0)=
\begin{cases}
0.1x & \text{if } 0<x<1 \\
0.1(2-x) & \text{if } 1\leq x<2
\end{cases}##
##u_{t}(x,0)=0##
- Relevant Equations
- D’Alembert’s Formula
I have solved the question using formula:
$$u(x,t)=\Sigma_{n=1}^{\infty} \sin \left(\frac{n \pi x}{2}\right) \left[a_n \frac{2}{n \pi} \sin \left(\frac{n \pi t}{2}\right)+b_n \cos \left(\frac{n \pi t}{2}\right)\right]$$
and I get:
$$u(x,t)=\Sigma_{n=1}^{\infty} \frac{0.8}{n^2 \pi^2}\sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{n \pi t}{2}\right) \sin \left(\frac{n \pi x}{2}\right)$$
as the solution.
I want to try using d’Alembert’s Formula: ##u(x,t)=A(x-t)+B(x+t)## where
$$A(y)=\frac{1}{2} \left(F(y)-\int_{0}^{y} G(x) dx \right)$$
$$B(y)=\frac{1}{2} \left(F(y)+\int_{0}^{y} G(x) dx \right)$$
and ##F## and ##G## are and odd periodic extensions of ##f(x)## and ##g(x)## (##f(x)=u(x,0)## and ##g(x)=u_{t}(x,0)##)
For this question, ##g(x)=0## so ##G(x)## is also 0. For ##F(y)##:
$$F(y)=
\begin{cases}
-0.1(2+y) &, -2<y<-1 \\
0.1y & , -1<y<1 \\
0.1(2-y) & , 1\leq y<2
\end{cases}$$
$$A(x-t)=\frac{1}{2} F(x-t)=
\begin{cases}
-0.1(2+x-t) &, -2<x<-1 \\
0.1(x-t) & , -1<x<1 \\
0.1(2-x+t) & , 1\leq x<2
\end{cases}
$$
$$B(x+t)=\frac{1}{2} F(x+t)=
\begin{cases}
-0.1(2+x+t) &, -2<x<-1 \\
0.1(x+t) & , -1<x<1 \\
0.1(2-x-t) & , 1\leq x<2
\end{cases}
$$
So:
$$u(x,t)=A(x-t)+B(x+t)$$
$$=
\begin{cases}
-0.2(2+x) &, -2<x<-1 \\
0.2x & , -1<x<1 \\
0.2(2-x) & , 1\leq x<2
\end{cases}
$$
Is this even correct? Is it possible to get the same solution in sigma form using D’Alembert’s Formula?
Thanks
$$u(x,t)=\Sigma_{n=1}^{\infty} \sin \left(\frac{n \pi x}{2}\right) \left[a_n \frac{2}{n \pi} \sin \left(\frac{n \pi t}{2}\right)+b_n \cos \left(\frac{n \pi t}{2}\right)\right]$$
and I get:
$$u(x,t)=\Sigma_{n=1}^{\infty} \frac{0.8}{n^2 \pi^2}\sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{n \pi t}{2}\right) \sin \left(\frac{n \pi x}{2}\right)$$
as the solution.
I want to try using d’Alembert’s Formula: ##u(x,t)=A(x-t)+B(x+t)## where
$$A(y)=\frac{1}{2} \left(F(y)-\int_{0}^{y} G(x) dx \right)$$
$$B(y)=\frac{1}{2} \left(F(y)+\int_{0}^{y} G(x) dx \right)$$
and ##F## and ##G## are and odd periodic extensions of ##f(x)## and ##g(x)## (##f(x)=u(x,0)## and ##g(x)=u_{t}(x,0)##)
For this question, ##g(x)=0## so ##G(x)## is also 0. For ##F(y)##:
$$F(y)=
\begin{cases}
-0.1(2+y) &, -2<y<-1 \\
0.1y & , -1<y<1 \\
0.1(2-y) & , 1\leq y<2
\end{cases}$$
$$A(x-t)=\frac{1}{2} F(x-t)=
\begin{cases}
-0.1(2+x-t) &, -2<x<-1 \\
0.1(x-t) & , -1<x<1 \\
0.1(2-x+t) & , 1\leq x<2
\end{cases}
$$
$$B(x+t)=\frac{1}{2} F(x+t)=
\begin{cases}
-0.1(2+x+t) &, -2<x<-1 \\
0.1(x+t) & , -1<x<1 \\
0.1(2-x-t) & , 1\leq x<2
\end{cases}
$$
So:
$$u(x,t)=A(x-t)+B(x+t)$$
$$=
\begin{cases}
-0.2(2+x) &, -2<x<-1 \\
0.2x & , -1<x<1 \\
0.2(2-x) & , 1\leq x<2
\end{cases}
$$
Is this even correct? Is it possible to get the same solution in sigma form using D’Alembert’s Formula?
Thanks