Solving the Weight Puzzle: Explaining Why and How

AI Thread Summary
The discussion centers on understanding the relationship between the weight of a bar and its centroid. The integral representing the weight is calculated as the length of the bar multiplied by the weight per unit length of 6 lb/ft. Clarification is sought on why this integral equals the weight and the significance of multiplying by 6. Additionally, there is confusion regarding the definition of ##\bar{x}##, which is identified as the x-coordinate of the centroid, and its connection to the weight and integral expression. The conversation emphasizes the need for a clearer explanation of these concepts in relation to the weight calculation.
Tapias5000
Messages
46
Reaction score
10
Homework Statement
The uniform bar is bent in the form of a parabola and has a weight per unit length of 6 lb>ft. parabola and has a weight per unit length of 6 lb>ft. Determine the reactions at the fixed support A.
Relevant Equations
## dL=\sqrt{\left(\frac{dx}{dy}\right)^2+1}dy ##
## \overline{x}=\frac{\int _{ }^{ }\tilde{x}dL}{\int _{ }^{ }dL} ##
1635021706807.png

My solution is
<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}Data\\
\begin{array}{l}\left(dL\right)^2=\left(dx\right)^2+\left(dy\right)^2\\
dL=\sqrt{\left(dx\right)^2+\left(dy\right)^2}\\
dL=\sqrt{\left(\left(\frac{dx}{dy}\right)^2dy^2+\left(1\right)\left(dy\right)^2\right)}\\
dL=\sqrt{\left(\frac{dx}{dy}\right)^2+1}dy\\
y^2=3x\\
\frac{y^2}{3}=x\ →\frac{2y}{3}dy=dx\\
\frac{y^2}{3}=x\ →\frac{2y}{3}=\frac{dx}{dy}\\
\overline{x}=\frac{\int_0^3\tilde{x}dL}{\int_0^3dL}\ →\left[\textcolor{#E94D40}{\ dL=\sqrt{\left(\frac{dx}{dy}\right)^2+1}dy}\right]\\
\overline{x}=\frac{\int_0^3\tilde{x}\sqrt{\left(\frac{dx}{dy}\right)^2+1}dy}{\int_0^3\sqrt{\left(\frac{dx}{dy}\right)^2+1}dy}\ →\left[\textcolor{#E94D40}{\ \frac{dx}{dy}=\frac{2y}{3}}\right]\end{array}\\
\overline{x}=\frac{\int_0^3x\sqrt{\left(\frac{2y}{3}\right)^2+1}dy\ →\ \left[\textcolor{#E94D40}{\frac{y^2}{3}=x}\ \right]\ }{\int_0^3\sqrt{\left(\frac{2y}{3}\right)^2+1}dy}\\
\overline{x}=\frac{\int_0^3\frac{y^2}{3}\sqrt{\left(\frac{2y}{3}\right)^2+1}dy\ \ }{\int_0^3\sqrt{\left(\frac{2y}{3}\right)^2+1}dy}\\
\overline{x}=\frac{5.46}{4.44}p\\
\overline{x}\approx1.23p\\
w=\int_0^36\sqrt{\left(\frac{2y}{3}\right)^2+1}dy\\
w=\textcolor{#28AE61}{\frac{6}{3}}\int_{ }^{ }\sqrt{4y^2+9}dy\ \left(y=\frac{3}{2}\tan\theta,\ dy=\frac{3}{2}\sec^2\theta\ d\theta\right)\\
w=2\int_{ }^{ }\sqrt{9\tan^2\theta+9}\frac{3}{2}\sec^2\theta\ d\theta\\
w=\frac{\cancel{\textcolor{#E94D40}{2}}\cdot3\cdot3}{\cancel{\textcolor{#E94D40}{2}}}\int_0^3\sqrt{\tan^2\theta+1}\sec^2\theta\ d\theta\\
w=9\int_{ }^{ }\sec^3\theta\ d\theta\ \left(u=\sec\theta,\ du=\sec\theta\tan\theta,\ dv=\sec^2\theta,\ v=\tan\theta\right)\\
w=9\left\{\sec\theta\tan\theta-\int_{ }^{ }\sec\theta\tan\theta\tan\theta d\theta\right\}\\
w=9\left\{\sec\theta\tan\theta-\int_{ }^{ }\sec\theta\tan^2\theta d\theta\right\}\\
w=9\left\{\sec\theta\tan\theta-\int_{ }^{ }\left(\sec^3\theta-\sec\theta\right)d\theta\right\}\\
w=9\left\{\sec\theta\tan\theta-\int_{ }^{ }\sec^3\theta d\theta+\int_{ }^{ }\sec\theta d\theta\right\}\\
w=\frac{9}{2}\sec\theta\tan\theta+\frac{9}{2}\ln\left|\sec\theta+\tan\theta\right|\ \left[y=\frac{3}{2}\tan\theta,\ \theta=\arctan\left(\frac{2y}{3}\right)\right]\\
w=\frac{9}{2}\frac{\sqrt{4y^2+9}}{3}\frac{2y}{3}+\frac{9}{2}\ln\left|\frac{\sqrt{4y^2+9}}{3}+\frac{2y}{3}\right|\\
w=y\sqrt{4y^2+9}+\frac{9}{2}\ln\left|\frac{2y+\sqrt{4y^2+9}}{3}\right|\ \begin{bmatrix}3\\
0\end{bmatrix}\\
w=3\sqrt{4\left(3\right)^2+9}+\frac{9}{2}\ln\left|\frac{2\left(3\right)+\sqrt{4\left(3\right)^2+9}}{3}\right|-\left(\cancel{\textcolor{#E94D40}{0\sqrt{4\left(0\right)^2+9}}}+\frac{9}{2}\ln\left|\frac{\cancel{\textcolor{#E94D40}{2\left(0\right)}}+\sqrt{\cancel{\textcolor{#E94D40}{4\left(0\right)^2}}+9}}{3}\right|\right)\\
w=9\sqrt{5}+\frac{9\ln\left(2+\sqrt{5}\right)}{2}-\left(\textcolor{#E94D40}{\cancel{\frac{9}{2}\ln\left|1\right|}}\right)\\
w=26.62lb\end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><mi>D</mi><mi>a</mi><mi>t</mi><mi>a</mi></mtd></mtr><mtr><mtd><mtable columnspacing=1em rowspacing=4pt><mtr><mtd><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>d</mi><mi>L</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo>=</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>d</mi><mi>x</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>d</mi><mi>y</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup></mtd></mtr><mtr><mtd><mi>d</mi><mi>L</mi><mo>=</mo><msqrt><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>d</mi><mi>x</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>d</mi><mi>y</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup></msqrt></mtd></mtr><mtr><mtd><mi>d</mi><mi>L</mi><mo>=</mo><msqrt><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>y</mi></mrow></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mi>d</mi><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>1</mn><mo data-mjx-texclass=CLOSE>)</mo></mrow><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>d</mi><mi>y</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow></msqrt></mtd></mtr><mtr><mtd><mi>d<
-hhWsBfNmxOB99DZJZQyRA2Qwj_HTwpdlPJ74SIZozf1=s1600.png

<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}↶_+ΣM_A=0\\
M_A-\overline{x}\cdot26.6=0\\
M_A-1.23\cdot26.6=0\\
\left[\textcolor{#E94D40}{M_A=32.72↶_+}\right]\\
\overrightarrow{+}Σfx=0\\
\left[\textcolor{#E94D40}{A_x=\overrightarrow{0}}\right]\\
_+↑Σfy=0\\
A_y-26.6=0\\
\left[\textcolor{#E94D40}{A_y=26.6_+↑}\right]\\
Solutions\\
\left[\textcolor{#E94D40}{A_x=\overrightarrow{0}}\right]\left[\textcolor{#E94D40}{A_y=26.6_+↑}\right]\\
\left[\textcolor{#E94D40}{M_A=32.72↶_+}\right]\end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><msub><mo>↶</mo><mo>+</mo></msub><mi>Σ</mi><msub><mi>M</mi><mi>A</mi></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>M</mi><mi>A</mi></msub><mo>−</mo><mover><mi>x</mi><mo accent=true>―</mo></mover><mo>⋅</mo><mn>26.6</mn><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>M</mi><mi>A</mi></msub><mo>−</mo><mn>1.23</mn><mo>⋅</mo><mn>26.6</mn><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><msub><mi>M</mi><mi>A</mi></msub><mo>=</mo><mn>32.72</mn><msub><mo>↶</mo><mo>+</mo></msub></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mover><mo>+</mo><mo>→</mo></mover><mi>Σ</mi><mi>f</mi><mi>x</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><msub><mi>A</mi><mi>x</mi></msub><mo>=</mo><mover><mn>0</mn><mo>→</mo></mover></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi/><mo>+</mo></msub><mo stretchy=false>↑</mo><mi>Σ</mi><mi>f</mi><mi>y</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>A</mi><mi>y</mi></msub><mo>−</mo><mn>26.6</mn><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><msub><mi>A</mi><mi>y</mi></msub><mo>=</mo><msub><mn>26.6</mn><mo>+</mo></msub><mo stretchy=false>↑</mo></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mi>S</mi><mi>o</mi><mi>l</mi><mi>u</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mi>s</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><msub><mi>A</mi><mi>x</mi></msub><mo>=</mo><mover><mn>0</mn><mo>→</mo></mover></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><msub><mi>A</mi><mi>y</mi></msub><mo>=</mo><msub><mn>26.6</mn><mo>+</mo></msub><mo stretchy=false>↑</mo></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><msub><mi>M</mi><mi>A</mi></msub><mo>=</mo><mn>32.72</mn><msub><mo>↶</mo><mo>+</mo></msub></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr></mtable></math>
Pu86lhm6bdm8enE8Nd-Ruc3yuopJ5st3T-gWcQEX1fIv=s1600.png

However can someone explain in detail why
7rEJAKNbTVFKW4R9L7Wcvr_qv5KBnDlvK5ll2q-9m7_h=s1600.png

will be equal to the weight? and why does it have to be multiplied by 6?
 

Attachments

  • 1635021492849.png
    1635021492849.png
    19.8 KB · Views: 140
Physics news on Phys.org
The integral is length of the bar multiplied by weight per unit length of 6 lb>ft so should be equal to weight of bar in lb. I do not see if it equals to ##\bar{x}## which I do not catch its definition.
 
anuttarasammyak said:
The integral is length of the bar multiplied by weight per unit length of 6 lb>ft so should be equal to weight of bar in lb. I do not see if it equals to ##\bar{x}## which I do not catch its definition.
##\bar{x}## should be the x coordinate of the centroid. I can't see anywhere in the image that equates that to w or to the integral expression for w.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top