Solving Trig Equations: Help Needed!

  • Context: MHB 
  • Thread starter Thread starter Drain Brain
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
SUMMARY

This discussion focuses on solving a system of trigonometric equations related to the equilibrium of a particle. The equations involved are $W\cos(30^{\circ}) - 275\cos(\theta) = 0$ and $W\sin(30^{\circ}) + 275\sin(\theta) = 300$. The user successfully derived a quadratic equation, $W^2 - 600W\sin(30) + 300^2 - 275^2 = 0$, yielding two values for $W$ (240.1 lb and 59.86 lb) and corresponding angles $\theta$ (40.9° and 79.13°). The discussion concludes that both sets of solutions are valid, but the context of the problem dictates which solution to choose.

PREREQUISITES
  • Understanding of trigonometric functions and identities
  • Familiarity with solving quadratic equations
  • Knowledge of equilibrium conditions in physics
  • Ability to manipulate and isolate variables in equations
NEXT STEPS
  • Study the derivation of trigonometric identities for solving equations
  • Learn about the application of quadratic equations in physics problems
  • Research equilibrium conditions and forces in particle mechanics
  • Explore the implications of multiple solutions in mathematical modeling
USEFUL FOR

Students and professionals in physics, engineering, and mathematics who are dealing with equilibrium problems and trigonometric equations. This discussion is particularly beneficial for those learning to apply mathematical concepts to real-world scenarios.

Drain Brain
Messages
143
Reaction score
0
Can you help me how to solve this system of trig eqns

$W\cos(30^{\circ})-275\cos(\theta)=0$
$W\sin(30^{\circ})+275\sin(\theta)=300$

I have tried to divide the first eqn by 2nd and I get

$\tan(30^{\circ})=\frac{275}{300\cos(\theta)}-\tan(\theta)$ I'm stuck here! Kindly help me please!
 
Mathematics news on Phys.org
Drain Brain said:
Can you help me how to solve this system of trig eqns

$W\cos(30^{\circ})-275\cos(\theta)=0$
$W\sin(30^{\circ})+275\sin(\theta)=300$

I have tried to divide the first eqn by 2nd and I get

$\tan(30^{\circ})=\frac{275}{300\cos(\theta)}-\tan(\theta)$ I'm stuck here! Kindly help me please!

Hey Drain Brain!

Suppose we isolate $\cos(\theta)$ and $\sin(\theta)$ in each equation, squared them, and add them.
Then we would be rid of $\theta$ and can solve for $W$.

Afterwards, we can substitute $W$ back in the first equation and solve for $\theta$.
Finally, we should check if the solutions found are actually solutions, since we may have introduced new solutions.
 
HI I LIKE YOU!:o

I just did what said and came up with a quadratic equation

$W^2-600W\sin(30)+300^2-275^2=0$

the two solutions are

$W=240.1$ and $W=59.86$

$\theta = 40.9$ and $\theta = 79.13$

which of them should I choose?
 
Drain Brain said:
HI I LIKE YOU!:o

I just did what said and came up with a quadratic equation

$W^2-600W\sin(30)+300^2-275^2=0$

the two solutions are

$W=240.1$ and $W=59.86$

Good! ;)
$\theta = 40.9$ and $\theta = 79.13$

which of them should I choose?

Actually, you should have 2 solutions for $\theta$ for each value of $W$...

What happens if we substitute them in the second equation?
 
I like Serena said:
Good! ;)

Actually, you should have 2 solutions for $\theta$ for each value of $W$...

What happens if we substitute them in the second equation?

$240\sin(30^{\circ})+275\sin(40.9)=300$-->>$300=300$ $59.86\sin(30^{\circ})+275\sin(79.13)=300$---->>$300=300$

Does this mean that the values of W and $\theta$ that I get are valid solutions?

Actually the system of equations that I posted above came from a problem about equilibrium of a particle.
I was asked to find force W and angle $\theta$ to satisfy equilibrium conditions. The answer to this problem was 240 lb for W, and $\theta=40.9$. If both sets of solution are valid, why the other solution was not chosen?
 
Drain Brain said:
$240\sin(30^{\circ})+275\sin(40.9)=300$-->>$300=300$ $59.86\sin(30^{\circ})+275\sin(79.13)=300$---->>$300=300$

Does this mean that the values of W and $\theta$ that I get are valid solutions?

Actually the system of equations that I posted above came from a problem about equilibrium of a particle.
I was asked to find force W and angle $\theta$ to satisfy equilibrium conditions. The answer to this problem was 240 lb for W, and $\theta=40.9$. If both sets of solution are valid, why the other solution was not chosen?

Yes, they are both solutions.
It depends on the actual problem statement what to do with them.
Perhaps just a single solution was requested, perhaps there is another reason to discard one of them, or perhaps the given answer is simply incomplete.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K