MHB Solving wave equation using Fourier Transform

Click For Summary
The discussion focuses on the challenges of performing the inverse Fourier transform, particularly regarding the transformation of cosine functions into Dirac delta functions. The Fourier transform of a constant function results in a Dirac delta distribution, indicating that the function is zero everywhere except at one point. When applying this to a cosine function, it is shown that its Fourier transform consists of two Dirac delta functions, one at positive frequency and one at negative frequency. The confusion arises from understanding how the inverse Fourier transform leads to these delta functions. Overall, the thread highlights the mathematical intricacies involved in Fourier transforms and their interpretations in terms of distributions.
spideyjj1
Messages
1
Reaction score
0
I am having trouble with doing the inverse Fourier transform. Although I can find some solutions online, I don't really understand what was going on, especially the part that inverse Fourier transform of cosine function somehow becomes some dirac delta. I've been stuck on it for 2 hrs...
 
Physics news on Phys.org
The Fourier transform of f is defined by $F(s)=\int_{-\infty}^{+\infty}f(t)e^{-i2\pi st}dt$. if f(t)=1 let $F_{1}$ be it's Fourier transform for $s\neq0$ you get
$F_{1}(s)=\int_{-\infty}^{+\infty}e^{-i2\pi st}dt=0$ ( odd function ). And for s=0
$F_{1}(0)=\int_{-\infty}^{+\infty}1dt=+\infty$ so
$F_{1}$ is then defined by $F_{1}(s)=0$ if $s\neq0$ and $F_{1}(0)=+\infty$. $F_{1}$ is the Dirac delta "function" ( It's a distribution ). $F_{1}(s)=\delta(s)$
Now if $f(t)= cos(2\pi \omega t)$ then $f(t)=\frac{1}{2}(e^{i2\pi \omega t}+e^{-i2\pi\omega t})$. The Fourier transform of f is then $F(s)= \frac{1}{2}\int_{-\infty}^{+\infty}e^{-i2\pi (s-\omega)t}dt+ \frac{1}{2}\int_{-\infty}^{+\infty}e^{-i2\pi (s+\omega)t}dt= \frac{1}{2}F_{1}(s-\omega)+ \frac{1}{2}F_{1}(s+\omega)= \frac{1}{2}\delta(s-\omega)+ \frac{1}{2}\delta(s+\omega)$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
770
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K