A Some algebra in Schutz's textbook

  • A
  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Algebra Textbook
Click For Summary
The discussion revolves around deriving the expression for D from Schutz's textbook, specifically Equation (11.89). The user expresses frustration with the complexity of the algebra involved and seeks assistance in using Maple for step-by-step verification. Key points include a discussion of terms in the numerator and denominator, particularly regarding the signs and factors of sin²(θ). There is also a transition to discussing Equation (11.91) and subsequent equations, with users clarifying derivations and correcting misunderstandings about the algebra involved. The conversation highlights the collaborative effort to resolve algebraic challenges in theoretical physics.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR
There's some algebraic manipulation which I need help with on pages 309-313 of Schutz's second edition of "A First Course in GR".
Until I understand how to use maple for my steps by steps algebra manipulation feature (which I learned it has), I'll use PF for some help in the algebra.
I want to derive the expression for ##D=-\Delta \sin^2 \theta## on page 313 in Equation (11.89).
Attachments of printscreen below.

I wrote two lines, and got discouraged because it seems a long calculation.

$$D=\bigg(\frac{a^2\sin^2 \theta-\Delta^2}{\rho^2}\bigg) \bigg(\frac{(r^2+a^2)^2-a^2\Delta\sin^2\theta}{\rho^2}\bigg)\sin^2\theta-\frac{4a^2M^2 r^2\sin^4\theta}{\rho^4}$$
$$=[a^2\sin^2\theta(r^2+a^2)^2-a^4\Delta \sin^4 \theta-\Delta^2(r^2+a^2)^2+a^2\Delta^3\sin^2\theta]\frac{\sin^2\theta}{\rho^4}-4a^2M^2r^2\sin^4\theta/\rho^4$$
##\Delta## and ##\rho^2## are given on page 309.
 
Physics news on Phys.org
Here are the attachments.
 

Attachments

  • Screenshot from 2021-08-26 15-51-59.png
    Screenshot from 2021-08-26 15-51-59.png
    38.1 KB · Views: 131
  • Screenshot from 2021-08-26 15-52-41.png
    Screenshot from 2021-08-26 15-52-41.png
    30.7 KB · Views: 124
I am not sure about your derivation. How did you get the term in the numerator of ##(-a^4 \sin^6\theta)##? after you extract ##\sin^2(\theta)## from the numerator you get: ##-a^4 \sin^4\theta## which in the denominator the suitable expression doesn't have a minus sign it has ##a^4 \sin^4\theta##. I assume you should be getting: ##-\Delta \sin^2\theta (\frac{A}{A})## where ##A## is some expression that depends on ##\theta,r,a## But you don't get the same expression in the numerator as in the denominator. This is why I wanted maple's to check it for me; but as of yet I don't understand how to use maple to expand this expression while showing all the steps.
There's no mistake! 😋\begin{align*}
K &= -\sin^2{\theta} \left[ \dfrac{\Delta(r^2+a^2)^2 - a^2\sin^2{\theta}(r^2+a^2)^2 - \Delta^2 a^2 \sin^2{\theta} + \Delta a^4 \sin^4{\theta}}{\Sigma^2}\right] \\
&\quad \quad \quad \quad \quad \quad \quad - \, \, \dfrac{a^2\sin^4{\theta}[(r^2+a^2)^2 - 2\Delta(r^2+a^2) + \Delta^2]}{\Sigma^2} \\ \\

&= \dfrac{\Delta \sin^2{\theta}}{\Sigma^2} \left[ 2a^2(r^2+a^2) \sin^2{\theta} - a^4 \sin^4{\theta} - (r^2 +a^2)^2 \right]
\end{align*}Recall that \begin{align*}\Sigma^2 = (r^2+a^2\cos^2{\theta})^2 &= r^4 + 2r^2 a^2(1-\sin^2{\theta}) + a^4 (1-\sin^2{\theta})^2 \\

&= r^4 + 2r^2 a^2 - 2r^2 a^2 \sin^2{\theta} + a^4 -2a^4 \sin^2{\theta} + a^4 \sin^4{\theta} \\

&= -\left[ 2a^2(r^2+a^2) \sin^2{\theta} - a^4 \sin^4{\theta} - (r^2 +a^2)^2 \right]

\end{align*}therefore ##K = -\Delta \sin^2{\theta}##
 
ergospherical said:
There's no mistake! 😋\begin{align*}
K &= -\sin^2{\theta} \left[ \dfrac{\Delta(r^2+a^2)^2 - a^2\sin^2{\theta}(r^2+a^2)^2 - \Delta^2 a^2 \sin^2{\theta} + \Delta a^4 \sin^4{\theta}}{\Sigma^2}\right] \\
&\quad \quad \quad \quad \quad \quad \quad - \, \, \dfrac{a^2\sin^4{\theta}[(r^2+a^2)^2 - 2\Delta(r^2+a^2) + \Delta^2]}{\Sigma^2} \\ \\

&= \dfrac{\Delta \sin^2{\theta}}{\Sigma^2} \left[ 2a^2(r^2+a^2) \sin^2{\theta} - a^4 \sin^4{\theta} - (r^2 +a^2)^2 \right]
\end{align*}Recall that \begin{align*}\Sigma^2 = (r^2+a^2\cos^2{\theta})^2 &= r^4 + 2r^2 a^2(1-\sin^2{\theta}) + a^4 (1-\sin^2{\theta})^2 \\

&= r^4 + 2r^2 a^2 - 2r^2 a^2 \sin^2{\theta} + a^4 -2a^4 \sin^2{\theta} + a^4 \sin^4{\theta} \\

&= -\left[ 2a^2(r^2+a^2) \sin^2{\theta} - a^4 \sin^4{\theta} - (r^2 +a^2)^2 \right]

\end{align*}therefore ##K = -\Delta \sin^2{\theta}##
Yeah, the mistake was on my part... :oldbiggrin:
 
@ergospherical have you also done the algebra of equation (11.91) on page 314?
The equation is: ##(\frac{dr}{d\lambda})^2=g^{rr}[(-g^{tt})E^2+2g^{t\phi}EL-g^{\phi \phi}L^2] \ \ \ (11.91)##.
 
Page 314 looks okay to me; which bit's causing you trouble?
 
ergospherical said:
Page 314 looks okay to me; which bit's causing you trouble?
How to derive it?
From which Equation or Equations does it follow?
Thanks!
 
Firstly, the photon is constrained to the equatorial plane, therefore ##p^{\theta} = 0##. Since ##g_{\mu \nu} p^{\mu} p^{\nu} = g^{\mu \nu}p_{\mu} p_{\nu} = 0## it follows that\begin{align*}
g^{tt} p_t p_t + g^{rr} p_r p_r + g^{\phi \phi} p_{\phi} p_{\phi} + 2g^{t\phi} p_t p_{\phi} &= 0 \\
\end{align*}then because ##E = -p_t## and ##L=p_{\phi}## we have\begin{align*}
g_{rr} (p^r)^2 &= -g^{tt} E^2 - g^{\phi \phi} L^2 + 2g^{t\phi}EL \\
(p^r)^2 &= g^{rr} \left[ -g^{tt} E^2 - g^{\phi \phi} L^2 + 2g^{t\phi}EL \right]
\end{align*}since ##g^{rr} = 1/g_{rr}## and ##p_r = g_{rr} p^r##. Putting ##p^r = dr/d\lambda## gives 11.91.
 
  • Like
Likes MathematicalPhysicist and vanhees71
  • #10
@ergospherical sorry to bother you again.

But there's something with equation (11.95) that got me stumped.
How did he get in the numerator the term: ##\pm r^2 \Delta^{1/2}##?
I get the following equations:
##\frac{g^{\phi\phi}}{g^{tt}}=\frac{a^2-\Delta}{(r^2+a^2)^2-a^2\Delta}##
So ##\omega^2 - \frac{g^{\phi \phi}}{g^{tt}}=\frac{4M^2r^2a^2-(a^2-\Delta)[(r^2+a^2)-a^2\Delta]}{[(r^2+a^2)^2-a^2\Delta]^2}##.
How does the numerator get in the end to: ##r^4\Delta##?

I get that the numerator becomes after substituting ##-2Mr= \Delta-(r^2+a^2)##:
the numerator: ##\Delta^2-2\Delta(r^2+a^2)+(r^2+a^2)^2-a^2(r^2+a^2)^2+\Delta (r^2+a^2)^2 -a^2\Delta^2+a^4 \Delta##.

Now, I am stuck.
How to proceed?, assuming I got until here correctly, which might be wrong... :-D
 
  • #12
I did see it yesterday, I just forgot about it... sorry :wink:
You just missed the factor of ##a^2## off of ##4M^2 r^2 a^2##. It should be\begin{align*}
((r^2+a^2)^2-a^2\Delta)^2 \left(\omega^2 - \frac{g^{\phi \phi}}{g^{tt}} \right)&=4M^2r^2a^2-(a^2-\Delta)((r^2+a^2)-a^2\Delta) \\

&= a^2 \Delta^2 - 2a^2 \Delta(r^2+a^2) + a^2(r^2 + a^2)^2 \\

&\quad \quad \quad \quad - a^2(r^2 + a^2)^2 + \Delta(r^2 + a^2)^2 + a^4 \Delta - a^2 \Delta ^2 \\ \\

&= \Delta((r^2 + a^2)^2 - 2a^2(r^2 + a^2) + a^4) \\
&= \Delta r^4
\end{align*}
 
  • Like
Likes vanhees71
  • #13
Damn, ****, dang... you are correct! :oldbiggrin:
 
  • Like
  • Haha
Likes vanhees71 and ergospherical