# Something weird with my Kurie-Plot (Beta Spectroscopy)

virtuosowanaB
So I'm doing a Beta Spectroscopy of Sodium and apart from the Energy Spectrum, I'm intending to use the Kurie Plot to incorporate the Coulomb Correction Factor F(Z,p). But when I try plotting the data, my K(Z,p) has an incredibly huge number, on the order of 1020 and the linear graph looks weird. My Count Rate vs Energy selected graph is alright.

Here are my steps.

I am using the equation

- K(Z,p) = √{ N(p)/(p2F(z,p))}

- F(Z,p), I'm using = {2πη}/{ 1 - e(-22πη)}

where η = (Zq2)/( ħv)

- To calculate v, I'm using v = BqR/m

- So to calculate p2 I'm using (mv)2 = (BqR)2

- Daughter nucleus of the decay is Ne. Z = 10.

- For N(p), I'm using the number of counts measured over an interval of
4 minutes.

The rest are pretty much standard constants.

So for each corresponding count, there would be a corresponding energy selected.

And I will plot the K(Z,p) on the y-axis, vs Energy (keV) on the x-axis.

Is there anything wrong that I'm doing with my Kurie Variable calculation?

Last edited:

Homework Helper
Gold Member
You might want to show a data point and your calculations including all units being carried through. There's nothing obviously wrong with what you've explained so far, but I will note that the electric charge in SI units is ##1.6\cdot 10^{-19}##~C, which might explain the overall scaling problem you claim to have.

virtuosowanaB

It has my Kurie Plot Data, as well as my Energy Spectrum Data.
My adjusted R-squared value for the Energy Spectrum is 0.99, which I believe has a decent accuracy.

I also read in http://www.hep.wisc.edu/~prepost/407/beta/beta.pdf on page 10, it says I could just plot sqrt(N/B^3).
I tried that too but my linear graph looks really messed up. I'm suspecting since my values of B are really small, it blows the numbers up to a really huge extent. But it should still work shouldnt it?
Is there something I'm overlooking?

Thanks a bunch

edit: Also I read from here: