Space-time interval invariance question

bernhard.rothenstein
Messages
991
Reaction score
1
Cinsider please the invariance of the space-time interval in an one space dimension approach
(x-0)2-c2(t-0)2=(x'-0)2-c2(t'-0)2
My question is: does it hold for arbitrary events (x,t) in I and (x',t') in I?
Does it hold only in the case when the events are genertated in I and I' by the same light signal (x=ct,t=x/c); (x'=ct',t'=x'/c) or in the case when the events are generated by the same tardyon moving with speed u in I and u' in I' i.e. (x=ut,t=x/u) and (x'=u't', t'=x'/u')?
Are x and x' the components of a "two" vector or only x=ct, x'=ct' and x=ut, x'=u't', u amd u' being related by the addition law of parallel speeds?
Thanks for your answer.
 
Physics news on Phys.org
bernhard.rothenstein said:
Cinsider please the invariance of the space-time interval in an one space dimension approach
(x-0)2-c2(t-0)2=(x'-0)2-c2(t'-0)2
My question is: does it hold for arbitrary events (x,t) in I and (x',t') in I?
QUOTE]
It holds for arbitrary x and t with x' and t' given by a LT from S to S'.
 
bernhard.rothenstein said:
Does it hold only in the case when the events are genertated in I and I' by the same light signal (x=ct,t=x/c); (x'=ct',t'=x'/c) or in the case when the events are generated by the same tardyon moving with speed u in I and u' in I' i.e. (x=ut,t=x/u) and (x'=u't', t'=x'/u')?
It holds for any x and t. If x is written as x=ut, then x' will =u't', with u'given by the relativistic velocity addiltion.
 
bernhard.rothenstein said:
Are x and x' the components of a "two" vector or only x=ct, x'=ct' and x=ut, x'=u't', u amd u' being related by the addition law of parallel speeds?
x and t are two components of a four-vector, as are x' and t'. Writing x=ut implies that a consstant velocity, which is not necessary for t^2-x^2 to be invariant.
 
The "interval" -(x^0)^2+\vec x^2 is invariant because it's the Minkowski space "scalar product" of a four-vector with itself. The "scalar product" (which isn't really a scalar product since the result can be negative) is defined by

\langle y,x \rangle=y^T\eta x=-y^0x^0+\vec y\cdot\vec x

This is invariant under Lorentz transformations because all Lorentz transformations satisfy the condition \Lambda^T\eta\Lambda=\eta.

\langle \Lambda y,\Lambda x\rangle=(\Lambda y)^T\eta (\Lambda x)=y^T\Lambda^T\eta\Lambda x=y^T\eta x=\langle y,x \rangle
 
\Delta
clem said:
x and t are two components of a four-vector, as are x' and t'. Writing x=ut implies that a consstant velocity, which is not necessary for t^2-x^2 to be invariant.

Thanks for your answer. Consider please the inertial reference frames I, I' and I" in the standard arrangement. I' moves with velocity V relative to I and I" moves with speed u relative to I and with speed u' relative to I' all speed showing in the positive direction of the overlapped x, x' and x" axes. A rod of proper length L(0) is located along the overlapped axes at rest relative to I". Observers from I measure its Lorentz contracted length
L=L(0)(1-u2/c2)1/2. (1)
For observers from I' the length of the same rod is
L'=L(0)(1-u'2/c2)1/2 (2)
Eliminating L(0) between (1) and (2) we obtain that the non-proper lengths are related by
L=L'(1-u2/c2)1/2/(1-u'2)/c21/2) (3)
Expressing the right side of (3) as a function of u' via the addition law of parallel speeds it becomes
L=L'(1-V2/c2)1/2)/[1+Vu'/c2] (4)
resulting that L and L' do not transform via the Lorentz transformation. Under such conditions are L=Dx and L'Dx' the components of a "two vector? Equation (4) suggests that 1/L and 1/L' are. Is there some connection with the concept of wave vector?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top