- #1
peroAlex
- 35
- 4
Hello! I have a small problem with a task professor gave us. I tried many options (you will see below) but I cannot seem to get the right solution. Any advice or guideline how to solve this would be really helpful. In advance I thank you for helping me.
Our professor of physics has sense of humor, so he represented this task: starship Enterprise captain measures his ship to be ##4500## meters long. Enterprise passes Earth with velocity of ## 0.8 c_0 ##. In opposite direction, starship Galactica flies by with velocity of ##0.9 c_0##. Compute how long will Enterprise appear to Galactica's captain.
Pretty obvious, this task will implement length contraction formula $$ L = \sqrt{1 - \frac{v^2}{c_0^2}} L_0 $$. Also, according to solutions, final result should be ##684## meters.
OK, so I began with computing Enterprise's velocity according to Galactica. Using ## v_e' = \frac{0.8c_0 - 0.9c_0}{1 - \frac{0.9c_0 \cdot 0.8c_0}{c_0^2}} = 0.35714c_0 ## I though I should just simply insert this into length contraction formula. It returned ##3608.1## meters.
Now I decided to use slightly different procedure. I used ## L = \sqrt{1 - \frac{v_e' v_{galactica}}{c_0^2}} L_0 ## but it returned ##3706.9## meters.
At this point I lost all hope. I really wish someone would be able to help me with this one.
Homework Statement
Our professor of physics has sense of humor, so he represented this task: starship Enterprise captain measures his ship to be ##4500## meters long. Enterprise passes Earth with velocity of ## 0.8 c_0 ##. In opposite direction, starship Galactica flies by with velocity of ##0.9 c_0##. Compute how long will Enterprise appear to Galactica's captain.
Homework Equations
Pretty obvious, this task will implement length contraction formula $$ L = \sqrt{1 - \frac{v^2}{c_0^2}} L_0 $$. Also, according to solutions, final result should be ##684## meters.
The Attempt at a Solution
OK, so I began with computing Enterprise's velocity according to Galactica. Using ## v_e' = \frac{0.8c_0 - 0.9c_0}{1 - \frac{0.9c_0 \cdot 0.8c_0}{c_0^2}} = 0.35714c_0 ## I though I should just simply insert this into length contraction formula. It returned ##3608.1## meters.
Now I decided to use slightly different procedure. I used ## L = \sqrt{1 - \frac{v_e' v_{galactica}}{c_0^2}} L_0 ## but it returned ##3706.9## meters.
At this point I lost all hope. I really wish someone would be able to help me with this one.