A Spectrum of the Liouville Operator

  • A
  • Thread starter Thread starter andresB
  • Start date Start date
  • Tags Tags
    Operator Spectrum
AI Thread Summary
The discussion centers on the Liouville differential operator defined using Poisson brackets in classical systems with Hamiltonians. It highlights that while the spectrum of this operator is easily computed for integrable systems, challenges arise for chaotic systems. Participants seek references for understanding the behavior of the Liouville operator in chaotic contexts, noting a lack of relevant literature beyond quantum mechanics. The conversation also touches on the Koopman-von Neumann mechanics, clarifying that the imaginary unit is necessary for the operator's Hermitian property. One contributor reveals authorship of a referenced paper that may provide further insights.
andresB
Messages
625
Reaction score
374
TL;DR Summary
I would like some references that study the spectrum of the Liouville operator in the general case.
Context: Consider a classical system with Hamiltonian ##H##. The Liouville differential operator can be defined using the Poisson brackets as $$L=-i\left \{ ,H \right \}.$$
##L## is Hermitian in the Hilbert space of square integrable wavefunctions over phase space. The spectrum of ##L## is easy to compute for all systems that are integrable in the Arnold-Liouville sense. What about the chaotic systems? is there any good reference for this? Google is only giving me papers for the Liouville- von Neumann operator of QM.
 
Last edited:
Physics news on Phys.org
vanhees71 said:
Are you working within Koopman-von-Neumann mechanics? Otherwise I don't understand your notation. Maybe this paper helps:

https://arxiv.org/abs/2204.02955
https://doi.org/10.1088/1751-8121/ac8f75

Yes, the imaginary i is to make the operator hermitian in the KvN mechanics.

On the other hand, I have to mention that I wrote that paper.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top