A Spectrum of the Liouville Operator

  • A
  • Thread starter Thread starter andresB
  • Start date Start date
  • Tags Tags
    Operator Spectrum
AI Thread Summary
The discussion centers on the Liouville differential operator defined using Poisson brackets in classical systems with Hamiltonians. It highlights that while the spectrum of this operator is easily computed for integrable systems, challenges arise for chaotic systems. Participants seek references for understanding the behavior of the Liouville operator in chaotic contexts, noting a lack of relevant literature beyond quantum mechanics. The conversation also touches on the Koopman-von Neumann mechanics, clarifying that the imaginary unit is necessary for the operator's Hermitian property. One contributor reveals authorship of a referenced paper that may provide further insights.
andresB
Messages
625
Reaction score
374
TL;DR Summary
I would like some references that study the spectrum of the Liouville operator in the general case.
Context: Consider a classical system with Hamiltonian ##H##. The Liouville differential operator can be defined using the Poisson brackets as $$L=-i\left \{ ,H \right \}.$$
##L## is Hermitian in the Hilbert space of square integrable wavefunctions over phase space. The spectrum of ##L## is easy to compute for all systems that are integrable in the Arnold-Liouville sense. What about the chaotic systems? is there any good reference for this? Google is only giving me papers for the Liouville- von Neumann operator of QM.
 
Last edited:
Physics news on Phys.org
vanhees71 said:
Are you working within Koopman-von-Neumann mechanics? Otherwise I don't understand your notation. Maybe this paper helps:

https://arxiv.org/abs/2204.02955
https://doi.org/10.1088/1751-8121/ac8f75

Yes, the imaginary i is to make the operator hermitian in the KvN mechanics.

On the other hand, I have to mention that I wrote that paper.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top