harrylin
- 3,874
- 93
I fully agree with that; I had no idea that with "worldline" you meant "detector"!PAllen said:To me, a detector (which follows a world line) is the only thing that can observe.
Thanks - Regretfully I am not familiar with "non-static spacetime" but perhaps that Naty's link that clarifies.Coordinate labels and simultaneity are abstractions, not observables. So any detector that can observe light emitted inside the EH observes red or blueshift following normal GR rules. The general GR rule is to parallel transport the emitter 4-velociy to the receiver world line along the light path followed. Then express the transported emitter 4 velocity and local light path tangent vector in the local frame basis of the reception event, and use SR doppler formula. This formulation covers every combination of kinematic and curvature and cosmological contribution to redshift in one general method. [..]
2) You can't even write an alternative equivalent formula for inside the horizon because the region inside the horizon is not static, so there is no such thing, even approximately, of a gravitational potential. The concept of gravitational redhsift factored out separately from general redshift as I described above is possible only for static spacetime. [..] the light path goes from a static region of spacetime to a non-static region. [..]
Short answer: your question reflects fundamental misunderstanding of GR; corrected in the only way I know, your conclusion is wrong.
I will compare your answer with the other answers.
It doesn't help yet; does it correspond to the "swapping of space and time"?Perhaps this coordinate free description will help ... or not; we'll see. [..] not only is it possible to choose interior events simultaneous with external event, there are infinite possible choices. Similarly, given an internal event, there is a set of external events in its past light cone; any external event outside of this past light cone is a possible choice for a simultaneous external event]
I don't know why you would think that (except for 1916GR which is subtly rejected by mainstream). Your answer implies that those questions have no answer; however several web links seem to give an answer.PAllen said:Just FYI: I feel I and others have have answered all of these questions multiple times in multiple ways, in multiple threads. It seems to me you simply reject the answers but are not willing to say, straight out, that you reject GR.
I asked for a "distant perspective" which is now found to be given in several links.pervect said:I don't have any idea what you're asking for here either.
Space time is curved, like the surface of the Earth. You can make maps of it, like you can make maps of the Earth's surface. But they won't / can't be to scale except for small regions (frames). The metric describes how the particular part of the map is distorted. To oversimplify greatly, the closer the metric is to unity, the less the distortion.
Surprise for me - and perhaps also for you:Considering that Hamilton spends a good part of his time describing a journey into a black hole, (complete with visuals), do you really think it's an accurate reading of him to say that he supports your "time stops at the event horizon, so we don't have to worry about what comes after" idea?
(That was semi-rhetorica., I can say that I certainly don't, and I would be surprised if you did if you thought about it a bit more. Though I've been surprised in this manner before, alas.)
I now found that Hamilton also discusses this question, and answers it with a falling space/flowing river model - a kind of ether inflow (question 9):
- http://casa.colorado.edu/~ajsh/collapse.html#collapsed
I thought that the "falling space" model was disproved, but this is apparently not established:
- "ajp.aapt.org/resource/1/ajpias/v76/i6/p519_s1?"
Anyway, GR is based on a model of static space with "curvature" due to "fields". "flowing" space is fundamentally different from "curved" space; it is conceptually more different from GR than LET from SR. Einstein's light bending calculation method according to which light locally slows down doesn't even apply to flowing space! With that model time does not stop at the event horizon. Perhaps flowing space gives the same verifiable predictions as GR, but it is definitely not the same model as the one Einstein used for GR and to which I referred with my question; now reading the interesting link by Naty.
PS. Links to two opinions, not including falling space theory:
http://arxiv.org/abs/gr-qc/0609024 (found by me, discussed in Discovermagazine)
http://www.jimhaldenwang.com/black_hole.htm (found by Naty)
Last edited by a moderator: